
Программные продукты и системы /Software&Systems 2 (33) 2020

 210

Software &Systems Received 26.09.19

DOI: 10.15827/0236-235X.130.210-217 2020, vol. 33, no. 2, pp. 210–217

Trapper: an operating system bootstrapping package

for IBM PC compatible computer systems

Y.I. Klimiankou 1, Postgraduate Student, klimenkov@bsuir.by

1 Belarusian State University of Informatics and Radioelectronics, Minsk, 220013, Belarus

The paper presents an overview of the bootstrapping process on the IBM PC-compatible computer systems

and proposes an architecture of the operating system bootstrapping package. The proposed package implements

a framework for constructing boot images targeted at non-traditional operating systems like microkernel, an

exokernel, unikernel, and multikernel. The bootstrapping package consists of three sets of independent boot

modules and a Boot Image Builder application, which creates OS boot images. This application integrates and

chains boot modules with one another to organize a complete bootloader chain. They are necessary to bring

the operating system to a working state. The bootstrapping package architecture reflects the principal stages of

the computer system boot process. Each set of boot modules is connected to the particular boot stage and forms

a layer that is responsible for performing its own clearly defined set of functions and relies on clearly defined

inter-layer interfaces to strictly isolate dependencies on the boot device, firmware and the specifics of the boot-

loaded operating system.

The paper presents the implementation of the described architecture for boot image generation designed

and implemented for a research multikernel operating system and explains how it boots up.

Additionally, the paper proposes the full separation idea of initialization code out of the operating system

kernel and its movement into the independent OS loader module. Following this idea leads to the exclusion of

the “dead” initialization-related program code from the OS kernel. In the commodity operating systems, such

code runs only once during system boot, however, being the part of the kernel executable binary image, con-

tinues to occupy memory until the system shuts down.

Keywords: boot image, loader, operating system, bootstrapping, image builder, IBM PC.

IBM PC architecture was introduced in the

early 80s and has rapidly become a de facto in-

dustry standard for a wide range of computer sys-

tems [1]. Modern IBM PC compatible computers

use CISC processors with IA-32 and x86_64 in-

struction set architectures [2]. In this paper, we will

mention only IA-32 while assuming them both, be-

cause x86_64 is a superset of IA-32.

IBM PC compatible computers are the example

of ultimately complex and tightly integrated sys-

tems that consist of three major components: hard-

ware, firmware, and software. Like any complex

system, computers are characterized by inertia.

Computers cannot perform user-defined work after

power on immediately. Instead, they should pass

through a comprehensive initialization process to

come into a ready-for-use state. During this pro-

cess, the computer system should properly initial-

ize all its components. Furthermore, they should

cooperate to accomplish this task. The main goal

of software initialization is a bootstrapping of the

operating system kernel.

This paper focuses on the Trapper architectu-

re – the operating system bootstrapping package
(OSBP) for IBM PC compatible computer sys-

tems. The bootstrapping package includes a three-

layer set of independent modules and an applica-

tion for their chaining during boot image assem-

bling. We refer to this application as the Boot Im-
age Builder (BIB).

A requirement to OSBP is to facilitate booting

of various operating systems from a wide range of

different boot devices and on machines with dif-

ferent types of firmware. Trapper design aims to

be flexible and extensible to be able to support

other types of boot devices, firmware, and a wide

range of operating systems of different architec-

tures with minimal additional investments.

Trapper design has two principal goals. First of

all, it targets primarily operating systems with non-

traditional architectures, while commonly used al-

ternatives are focusing on operating systems with

a monolithic kernel like Linux and Windows. Sec-

ond, Trapper is a light-weight solution that creates

a minimalistic boot image for explicitly specified

boot scenario, while widespread solutions like

GNU GRUB represent heavy-weight multi-pur-

pose multiboot packages. Nowadays, the most ex-

perimental and research operating systems imple-

ment either their private booting environments or

invest significant efforts into bidirectional adapta-

tion between OS and existing booting solution.

mailto:klimenkov@bsuir.by

Программные продукты и системы /Software&Systems 2 (33) 2020

 211

Furthermore, we did not find any publications

highlighting such issues. Almost all OS-related pa-

pers tend to omit this information. The secondary

goal of this paper is to fulfill this gap. Moreover,

Trapper supports an idea of complete separation of

initialization code from OS kernel, which is espe-

cially advantageous for minimalistic OS kernels.

IBM PC boot process

A common way to initialize a computer system

is the following. Immediately after power-up, each

computer system processor performs hardware in-

itialization and an optional built-in self-test

(BIST). During this process, the system places

each computer processor into a predefined well-

known state. For example, IA-32 processors set

registers to a known state, switch the CPU in real-

address mode, invalidate the internal caches,

translation lookaside buffers (TLBs), and the

branch target buffer (BTB). Next, computer sys-

tems with multiple CPU cores on the board (mul-

ticore processor or multiple processors) execute

protocol of multiple processor initialization. The

goal of this protocol is to select one processor

(bootstrap processor (BSP)) that will continue the

boot process.

A computer places the rest of CPUs (applica-

tion processors (APs)) in a halted state. The first

instruction that is fetched and executed by BSP,

following a hardware reset, is located at a hard-

wired physical address called a reset vector. For

the IA-32 platform, the 16-bytes reset vector lies at

the address FFFFFFF0H [3]. The EPROM con-

taining the software-initialization code must be lo-

cated at this address and performs a jump to the

initialization code of computer system firmware

that is also usually stored at ROM.

The IBM PC firmware, in its turn, performs

several steps to prepare the system for work. The

main action is RAM detection and initialization.

First, firmware detects the installed RAM type and

quantity and performs a simple memory test on it.

Then, firmware detects, enumerates, configures,

initializes and performs power-on self-test on

every bus and almost every hardware device on the

system. Firmware stores all information about the

hardware configuration of a computer system as

well as the memory map and then will pass it to the

bootloader. After that, firmware chooses a boot de-

vice and reads a loader from it into the memory.

Finally, it transfers control to the just read loader.

The main goal of the loader is to bring the en-

tire boot image into the memory. For that purpose,

the loader uses some configuration stored in non-

volatile memory. This config contains information

about the source and target location of the boot im-

age, as well as its size. Types of the firmware and

the used boot device define a loader code because

different boot devices require different access

methods. At the same time, the loader should be

tiny and conform with the boot specification of the

firmware.

The bootstrapping module depends on the firm-

ware, and its goals are to bring the computer sys-

tem into a predefined and firmware independent

state and to collect and unify the information about

a computer system. This information includes a

multiprocessor configuration (number and IDs of

CPUs present in the system) and a memory map

and then is passed by the bootstrapper to the boot-

loader. The bootstrapper also switches the IA-32

processor from real into protected mode. The con-

ceptual goal of the bootstrapper module is to en-

capsulate all firmware related activities and thus to

isolate bootloader from firmware. The bootstrap-

per defines a firmware-independent interface to

the bootloader to achieve this.

Finally, the bootloader finishes the operating

system boot process. Bootloaders depend on an op-

erating system. Their purpose is to prepare and in-

itialize a kernel. A bootloader not only initializes

kernel data structures but also switches a processor

into the final mode of functioning (enables virtual

memory and sets up descriptor tables), bootstraps

application processors of the system, and initial-

izes an initial set of applications. A bootloader ter-

minates its job by passing control to the entry point

of the first application that will already run under

kernel control and continue the initialization of the

OS environment and services.

Figure 1 shows the principal model of the com-

puter system boot process. It demonstrates the

main stages of the process and how the OSBP ar-

chitecture maps them.

Green boxes in Figure 1 represent three layers

of the OSBP architecture. They operate in the en-

vironment with one or two internal and one exter-

nal interface. Both loader and bootstrapper are

stick to the firmware interface while the bootloader

sticks to the specification of the operating system

and especially of its kernel. At the same time, a

loader, a bootstrapper, and a bootloader are inter-

facing between each other via internal interfaces.

The interface between a bootstrapper and a boot-

loader makes it possible to separate dependencies,

while the interface between a loader and a boot-

strapper creates an opportunity to generalize firm-

ware dependencies. Trapper tries to use these op-

portunities and replicates the principal model

Программные продукты и системы /Software&Systems 2 (33) 2020

 212

structure to create a highly flexible and extensible

operating system bootstrapping package.

Trapper OSBP architecture

Figure 2 depicts the Trapper OSBPdesign,

which allows flexible and easy construction of

boot images for various types of computers and op-

erating systems. The framework consists of a boot

image builder application and three buckets of in-

dependently designed and implemented boot mod-

ules: a bucket of loaders, a bucket of bootstrappers,

and a bucket of bootloaders.

Each bucket of boot modules relies on two in-

terfaces: one external and one internal. Internal

interfaces are standardized to allow independent

development and implementation of each boot

module. Each module, following the layered archi-

tecture, relies on one and implements another in-

ternal interface. A set of internal interfaces defines

the framework of the Trapper OSBP.

The principal purpose of loader modules is to

bring the entire boot image from boot medium into

the memory. The loader should also have a proces-

sor switched from real into a protected mode.

Loaders rely on the assumption that a boot image

is a single continuous potentially large file both in

boot medium and in memory.

Bootstrappers, in their turn, aim to switch a

processor into the unified and standardized state,

to collect and unify the description of a computer

CPU Reset Vector Firmware Loader Bootstrapper Bootloader
OS

initialization
services

OS Kernel

Initialization Use

Hardware Dependent Firmware Dependent

Boot Device Dependent Operating System Dependent

Fig. 1. A principal model of a computer system boot process

Loader 1 Loader 2 Loader N...

Bootstrapper 1 Bootstrapper 2 Bootstrapper N...

Bootloader 1 Bootloader 2 Bootloader N...

OS Kernel 1 OS Kernel 2 OS Kernel N

OS Services 1 OS Services 2 OS Services N

Boot
Image
Builder

Loaders
Bucket

Bootstrappers
Bucket

OS Loaders
Bucket

Boot
Image
Config

Loader 1 Bootstrapper N Bootloader 2 OS Kernel 2 Services 2

Boot Image

Fig. 2. Trapper OSBP architecture

Программные продукты и системы /Software&Systems 2 (33) 2020

 213

system configuration. Bootloaders generally re-

quire two pieces of information from a bootstrap-

per. The first one is a memory map that describes

the layout of the physical address space. The sec-

ond one is a multiprocessor table that lists CPUs

present in the system.

In contrast to the rest of the modules, Trapper

expects that bootloader development is the respon-

sibility of operating system kernel vendors. Boot-

loader offloads from the kernel all initialization re-

lated code. Its purposes are the initialization of the

CPU, operating system kernel, and an initial set of

OS services. As soon as a bootloader passes con-

trol to the first task, the entire boot process fin-

ishes, and all memory used by it becomes free.

Boot Image Builder application, as its name

implies, is used by system designers to create final

boot images and their installation to the specified

boot devices. Boot Image Builder uses a configu-

ration file and three buckets of boot modules, as

well as a specified target as an input parameter.

Guided by a configuration file, it collects required

boot modules from buckets and installs them into

a boot image, linking modules between each other.

Loaders

Loaders are the most numerous type of boot

modules used in the OSBP. Each loader represents

a particular type of boot device used in the envi-

ronment of specific firmware and is used solely for

bringing the entire boot image from the source

storage into memory. Due to this fact, such mod-

ules are typically tiny (less than a kilobyte) pro-

grams written in assembly language.

 Loaders are forced to rely on the underlying

firmware interface and drivers provided by it to ac-

cess the required boot medium and to capture a

boot image from it. For the same reason, frequently

being a part of the boot image, the loader is forced

to store the size of the entire boot image, as well as

offset to the bootstrapper entry point.

According to the convention declared in the

loader/bootstrapper interface, when a loader

passes control to the bootstrapper entry point, the

boot image is already fully loaded into memory.

Thus, neither bootstrapper nor bootloader does not

need to access a boot device to fulfill its require-

ments.

Different firmware affects loader design and

implementation in different ways. For example,

SFI eliminates the need in the loader, because

firmware itself performs all actions expected from

the loader [4]. Furthermore, SFI supports only

booting from system flash memory. Due to this

fact, there is no variability in the types of boot de-

vices. In its turn, UEFI assumes that the loader is a

standalone UEFI application, which is capable of

selecting the right boot image file on the file sys-

tem and read it into memory [5].

The most complicated case is a loader for disk

drives on BIOS firmware. First of all, the disk

drive oriented loader consists of two separate mod-

ules: Master Boot Record (MBR) and Partition

Boot Record (PBR) [6]. Both have a size of 512

bytes. The only purpose of the MBR loader is to

choose boot partition and load its PBR into the

memory. For that purpose, it uses a partition table

that is also a part of MBR (Fig. 3). In its turn, PBR

is a conventional loader that holds information

about the boot image source location and size and

reads it into the memory from the disk drive.

The PXE loader for BIOS-based computer sys-

tems, in turn, also implemented as a separate bi-

nary not included in the boot image. It uses PXE

API [7] provided on top of BIOS API to download

the boot image hosted on the remote TFTP server

[8]. The boot image itself is a separate file. By de-

sign, PXE-BIOS and HDD-UEFI loaders, in con-

trast to the HDD-BIOS loader disk sectors-ori-

ented design, follow the same conceptual file-

oriented design but use different infrastructures.

Bootstrappers

The role of bootstrappers is to isolate operating

system loaders from firmware. Therefore, all code,

required to communicate with firmware, concen-

trates in bootstrapper modules. The bootstrappers

layer relies on the interface provided by the loaders

layer, and, in its turn, provides an interface for the

bootloader layer. The main functions of the boot-

strapper module are:

− memory map gathering,

− gathering of the list of available processors,

− disabling interrupts on the interrupt control-

ler.

However, each implementation uses its firm-

ware to accomplish them.

Currently, there are three well-known firmware

interfaces for the IBM PC compatible computer

systems: BIOS, UEFI, and SFI (Fig. 4). Therefore,

Boot Code
Part.
Table

0 446 510

MBR
Signature
(0xAA55)

Fig. 3. Structure of the MBR

Программные продукты и системы /Software&Systems 2 (33) 2020

 214

there are three bootstrapper modules available in

the OSBP.

BIOS is a de facto standard for the IBM PC

compatible computer systems. It operates in the

16-bit real mode of CPU and has inherited a lot

of legacy features and functions. In fact, BIOS

bootstrapper uses only two BIOS functions: int

0x15-E820 [9] for querying memory map and int
0x10-0E for printing error messages on the screen.

Bootstrapper captures a list of available processors

from ACPI tables [10].

Intel has developed UEFI as a modern and

standardized successor of BIOS. In contrast to

BIOS, UEFI provides an advanced infrastructure

for bootstrappers. It provides an interface for ob-

taining a memory map, but, like a BIOS, relies on

the ACPI for enumeration of available processors.

While UEFI is a complete full-featured BIOS

replacement for high-end computer systems (spec-

ification consists of 2899 pages) [5], SFI is a sim-

plified BIOS successor and is extremely concise

(specification contains ten pages) [4] and conven-

ient for use in embedded systems. It implements an

interface in terms of tables for both obtaining a

memory map and a list of available processors.

Bootloader

Nowadays, this layer is filled only by one mod-

ule for our research multikernel operating system.

According to our approach, microkernel and

loader are designed and developed in pairs, where

bootloader offloads initialization from the kernel.

As a result, microkernel does not contain pieces of

“dead code” that runs only once during system

startup. On the other hand, the bootloader is forced

to have detailed knowledge about memory layout

used by the kernel, as well as about all its internal

data structures.

The bootloader of our multikernel OS (Fig. 5)

divides the physical memory of a computer into

zones and assigns them to processors. By doing

this, it creates logical domains, each of which will

be used by a separate OS node and managed by its

kernel. Bootloader installs appropriate compo-

nents of the boot image into the created domains to

complete the OS setup. Finally, the bootloader per-

forms startup application processors and initializes

kernel data structures in parallel on all OS nodes.

The bootloader ensures that each processor is

in the state expected by the microkernel. As a part

of this process, it initializes page tables and ena-

bles virtual memory.

As a part of the initialization process, the boot-

loader setups not only the kernel but also at least

one user-mode application. This application or a

set of applications initialized by bootloader plays

the role of the Init process and continues self-de-

ployment of the operating system. Once the boot-

loader has its work finished, it passes control di-

rectly to the Init application, bypassing the kernel,

but that Init application executes already under OS

kernel control.

Boot Image Builder

The Boot Image Builder is a glue that unites all

other parts of the framework. Implemented as a

command-line tool to facilitate automation, it as-

sembles the boot image from the boot modules

captured from the buckets under the guidance of

the XML-based configuration file passed to its in-

put.

As mentioned earlier, the main task of the Boot

Image Builder is to chain boot modules as well as

OS kernels and an initial set of applications into a

single image file. Guided by metadata that came

with loaders, the Boot Image Builder can separate

BIOS

R
A
M

UEFI SFI

ACPI

C
P
U

C
P
U

R
A
M

R
A
M

C
P
U

Fig. 4. Firmware and Bootstrappers

CPU CPU

CPU CPU

Core A
BSP

Core C
AP

Core B
AP

Core D
AP

RAM 1

RAM 1

RAM 2

RAM 2

OS Node A

OS Node C

OS Node B

OS Node D

OS Kernel A
Bootloader A

(BSP) OS Kernel BBootloader B (AP)

OS Kernel DBootloader D (AP)OS Kernel CBootloader C (AP)

Bootstrapper Loader

Fig. 5. Boot loading of multikernel OS

Программные продукты и системы /Software&Systems 2 (33) 2020

 215

loaders from the boot image, which is the case of

PXE-BIOS and GPT-HDD loaders. Additionally,

it can install the final boot image into the specified

disk partition. Finally, the Boot Image Builder has

facilities for disk partitioning and supports both

partitioning types: MBR and GPT. The MBR

loader module is an exceptional component of

OSBP.

At the same time, Boot Image Builder can em-

bed a dedicated configuration portion into a boot

image for later use by the bootloader. During em-

bedding, it converts this portion of the configura-

tion from XML into a specific binary form.

In our case, we have symmetric multikernel OS

for the SMP computer system. Due to this fact, we

have one type of kernel and respective bootloader,

but that loader is capable of working in two modes:

BSP and AP. BSP processor enables the boot-

loader BSP mode in which it performs deployment

of the entire operating system over the application

processors. BSP loader copies itself and an appro-

priate kernel to the memory zones assigned to the

application processors to accomplish this job.

Then, it starts up the application processors in such

a way that instances of bootloader copies run in the

AP mode, and thus, skip the OS deployment step.

The Boot Image Builder assembles the boot image

so that it contains only one instance of each boot

module type including kernels and loaders.

Another feature of the Boot Image Builder is

that it can parse executable files in PE format. Mi-

crokernel and its bootloader are built by the Mi-

crosoft C++ compiler as a single section PE exe-

cutables. First, the Boot Image Builder extracts

and puts into the boot image only the code sections

of both files. Second, it performs “linkage” be-

tween a bootloader and a kernel. The kernel uses

table-based dispatching in specific cases. The ex-

port table of kernel executable binary stores the ad-

dresses of the handler functions. In its turn, the

bootloader imports these addresses through its im-

port table. In the operating system environment,

OS makes such “linkage” at run time. In the case

of OSBP, the Boot Image Builder performs such

linkage during boot image assembling by filling a

bootloader import table by actual addresses of the

handler-functions of the kernel.

Conclusion and Outlook

This paper presents the architecture of Trap-

per – the operating system bootstrapping package

developed to facilitate booting of operating sys-

tems with alternative architectures. Trapper pro-

vides a flexible framework for building boot im-

ages targeting IBM PC compatible computer sys-

tems based on IA-32 processors. We have

demonstrated our design based on three layers of

boot modules and have pointed out the importance

of interfaces between them for strict separation of

dependencies from types of boot devices, firm-

ware, and operating systems. In this context, we

have presented an example of implementing OSBP

and its components, including loaders, bootstrap-

pers, bootloaders, and the Boot Image Builder ap-

plication. We have also shown that our architecture

provides a flexible environment that can be easily

extended to support the additional types of boot de-

vices, firmware, and other operating systems.

Moreover, we have demonstrated how our OSBP

works in the case of loading the multikernel oper-

ating system and how the full separation of initial-

ization code works for our model of co-design and

co-development of microkernel and its bootloader.

Although our framework was designed and imple-

mented for supporting IBM PC compatible com-

puters based on processors with IA-32 and x86_64

instruction set architectures, we hope that it can be

adopted to support processors with other instruc-

tion set architectures.

Acknowledgements. The research and development have been supported by the Belarusian State University

of Informatics and Radioelectronics. The authors would especially like to thank Peter Brancevich, Svyatoslav

Kulikov, and Kirill Surkov for their support and assistance.

References

1. Mazidi M., Mazidi J. The 80x86 IBM PC and Compatible Computers: Assembly Language, Design, and

Interfacing. Prentice Hall Publ., 2003, 1024 p.

2. IA-32 Intel Architecture Software Developer's Manual. Vol. 3: System Programming Guide. 2002.

Available at: https://pdos.csail.mit.edu/6.828/2003/readings/intelv3.pdf (accessed September 15, 2019).

3. Pelner J.M., Pelner J.A. Minimal Intel Architecture Boot Loader: Bare Bones Functionality Required

for Booting an Intel Architecture Platform. 2010. Available at: https://www.cs.cmu.edu/~410/doc/mini-

mal_boot.pdf (accessed September 15, 2019).

4. Brown L. The Simple Firmware Interface. Proc. 2009 Ottawa Linux Symp., Montreal, Canada, 2009,

pp. 55–60. Available at: https://www.kernel.org/doc/ols/2009/ols2009-pages-55-60.pdf (accessed September

15, 2019).

Программные продукты и системы /Software&Systems 2 (33) 2020

 216

5. Unified EFI Forum, Inc. Unified Extensible Firmware Interface Specification, Ver. 2.7. 2017. Available

at: http://www.uefi.org/sites/default/files/resources/UEFI_Spec_2_7.pdf (accessed September 15, 2019).

6. Chelliah B., Vidyadharan D.S., Sulekha D., Thomas K.L. Combating information hiding using forensic

methodology. Proc. 6th Intern. WDFIA, London, UK, 2011, pp. 69–75. Available at: https://pdfs.seman-

ticscholar.org/4a48/520523bc2e3ef9b52163200ae1b1473955d8.pdf (accessed September 15, 2019).

7. Preboot Execution Environment (PXE) Specification, Ver. 2.1. 1999. Available at: http://www.pix.net/

software/pxeboot/archive/pxespec.pdf (accessed September 15, 2019).

8. Sollins K. The TFTP Protocol (Revision 2). 1992. Available at: https://tools.ietf.org/html/rfc1350 (ac-

cessed September 15, 2019).

9. Yao J., Zimmer V.J., Fleming M. White Paper: A Tour Beyond BIOS Memory Map and Practices in

UEFI BIOS. 2016. Available at: https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_

Beyond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.pdf (accessed September 15, 2019).

10. Advanced Configuration and Power Interface Specification, Revision 2.0a. 2002. Available at: https://

www.intel.com/content/dam/www/public/us/en/documents/articles/acpi-config-power-interface-spec.pdf (ac-

cessed September 15, 2019).

11. Microsoft Portable Executable and Common Object File Format Specification, Revision 6.0. 1999.

Available at: https://courses.cs.washington.edu/courses/cse378/03wi/lectures/LinkerFiles/coff.pdf (accessed

September 15, 2019).

УДК 004.451.8 Дата подачи статьи: 26.09.19

DOI: 10.15827/0236-235X.130.210-217 2020. Т. 33. № 2. С. 210–217

Trapper: программный пакет для создания загрузочных образов, предназначенных

для использования в IBM PC-совместимых компьютерных системах

Е.И. Клименков 1, аспирант, klimenkov@bsuir.by

1 Белорусский государственный университет информатики и радиоэлектроники,

г. Минск, 220013, Республика Беларусь

В статье представлен обзор процесса начальной загрузки IBM PC-совместимых компьютерных си-

стем и предложена архитектура программного пакета предназначенного для создания загрузочных об-

разов, которые необходимы для подготовки и запуска операционной системы, и ориентированного на

поддержку загрузки операционных систем с альтернативными архитектурами, такими как микроядро-

ядерные, экзоядреные и многоядерные ОС.

Данная система представляется в виде трех отдельных наборов независимых загрузочных модулей,

дополненных приложением Boot Image Builder, предназначенным для создания загрузочных образов

операционной системы путем интеграции загрузочных модулей в единый бинарный образ и связыва-

ния их друг с другом для организации целостной цепочки загрузчиков, необходимой для приведения

операционной системы в работоспособное состояние. Архитектура предлагаемой программной си-

стемы отражает принципиальные этапы процесса загрузки компьютерной системы. Каждый набор за-

грузочных модулей связан с определенным этапом загрузки и образует слой, решающий свой собствен-

ный четко определенный набор задач и опирающийся на четко определенные межслойные интерфейсы

для строгой изоляции зависимостей от загрузочного устройства, нижележащего встроенного про-

граммного обеспечения и специфики загружаемой операционной системы. В статье представлена реа-

лизация предлагаемой архитектуры для генерации загрузочных образов, созданная для исследователь-

ской многоядерной операционной системы, а также объясняется процесс загрузки последней.

Кроме того, предложена идея полного отделения кода инициализации от кода ядра операционной

системы и его перемещения в независимый модуль загрузчика ОС. Следование этой идее приводит к

исключению мертвогокода, связанного с инициализацией, из ядра ОС. В традиционных операционных

системах такой код выполняется единожды при загрузке системы, однако, будучи частью исполняе-

мого двоичного образа ядра, продолжает занимать память на всем протяжении работы компьютерной

системы, вплоть до завершения ее работы.

Ключевые слова: загрузочный образ, загрузчик, операционная система, IBMPC.

http://www.cscan.org/openaccess/?paperid=85
http://www.cscan.org/openaccess/?paperid=85

Программные продукты и системы /Software&Systems 2 (33) 2020

 217

Исследования и разработки, положенные в основу данной работы, были проведены при поддержке

Белорусского Государственного Университета Информатики и Радиоэлектроники. Авторы выра-

жают особую благодарность П. Бранцевичу, С. Куликову и К. Суркову за помощь и поддержку.

Литература

1. Mazidi M., Mazidi J. The 80x86 IBM PC and compatible computers: assembly language, design, and

interfacing. Prentice Hall Publ., 2003, 1024 p.

2. Intel Corp. IA-32 Intel Architecture Software Developer's Manual. Vol. 3: System Programming Guide.

2002. URL: https://pdos.csail.mit.edu/6.828/2003/readings/intelv3.pdf (дата обращения: 15.09.2019).

3. Pelner J.M., Pelner J.A. Minimal Intel Architecture Boot Loader: Bare Bones Functionality Required

for Booting an Intel Architecture Platform. 2010. URL: https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf

(дата обращения: 15.09.2019).

4. Brown L. The Simple Firmware Interface. In Proc. of 2009 Ottawa Linux Symposium, Montreal, Can-

ada, 2009, pp. 55-60. URL: https://www.kernel.org/doc/ols/2009/ols2009-pages-55-60.pdf (дата обращения:

15.09.2019).

5. Unified EFI Forum, Inc. Unified Extensible Firmware Interface Specification, Ver. 2.7. 2017. URL:

http://www.uefi.org/sites/default/files/resources/UEFI_Spec_2_7.pdf (дата обращения: 15.09.2019).

6. Chelliah B., Vidyadharan D.S., Sulekha D., Thomas K.L. Combating information hiding using forensic

methodology. Proc. 6th Intern. WDFIA, London, UK, 2011, pp. 69–75. URL: https://pdfs.semanticscholar.

org/4a48/520523bc2e3ef9b52163200ae1b1473955d8.pdf (дата обращения: 15.09.2019).

7. Intel Corp. Preboot Execution Environment (PXE) Specification, Ver. 2.1. 1999. URL: http://www.

pix.net/software/pxeboot/archive/pxespec.pdf (дата обращения: 15.09.2019).

8. Sollins K. The TFTP protocol, revision 2. 1992. URL: https://tools.ietf.org/html/rfc1350 (дата обра-

щения: 15.09.2019).

9. Yao J., Zimmer V.J., Fleming M. White Paper: A Tour Beyond BIOS Memory Map and Practices in

UEFI BIOS. 2016. URL: https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Be-

yond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.pdf (дата обращения: 15.09.2019).

10. Compaq Computer Corp., Intel Corp., Microsoft Corp., Phoenix Technologies Ltd., Toshiba Corp. Ad-

vanced Configuration and Power Interface specification, revision 2.0a. 2002. URL: https://www.intel.com/con-

tent/dam/www/public/us/en/documents/articles/acpi-config-power-interface-spec.pdf (дата обращения:

15.09.2019).

11. Microsoft Corp. Microsoft Portable Executable and Common Object File Format Specification, revi-

sion 6.0. 1999. URL: https://courses.cs.washington.edu/courses/cse378/03wi/lectures/LinkerFiles/coff.pdf

(дата обращения: 15.09.2019).

Для цитирования

Клименков Е.И. Trapper: программный пакет для создания загрузочных образов, предназна-
ченных для использования в IBM PC-совместимых компьютерных системах // Программные
продукты и системы. 2020. Т. 33. № 2. С. 210–217. DOI: 10.15827/0236-235X.130.210-217.

For citation

Klimiankou Y.I. Trapper: an operating system bootstrapping package for IBM PC compatible com-
puter systems. Software & Systems. 2020, vol. 33, no. 2, pp. 210–217 (in Russ.). DOI: 10.15827/
0236-235X.130.210-217.

https://pdfs.semanticscholar.org/4a48/520523bc2e3ef9b52163200ae1b1473955d8.pdf
https://pdfs.semanticscholar.org/4a48/520523bc2e3ef9b52163200ae1b1473955d8.pdf

