TIpoepammmsie npooykmul u cucmemoi /Software&Systems

2 (33) 2020

Software &Systems
DOI: 10.15827/0236-235X.130.210-217

Received 26.09.19
2020, vol. 33, no. 2, pp. 210-217

Trapper: an operating system bootstrapping package
for IBM PC compatible computer systems

Y.I. Klimiankou 1, Postgraduate Student, klimenkov@bsuir.by

1 Belarusian State University of Informatics and Radioelectronics, Minsk, 220013, Belarus

The paper presents an overview of the bootstrapping process on the IBM PC-compatible computer systems
and proposes an architecture of the operating system bootstrapping package. The proposed package implements
a framework for constructing boot images targeted at non-traditional operating systems like microkernel, an
exokernel, unikernel, and multikernel. The bootstrapping package consists of three sets of independent boot
modules and a Boot Image Builder application, which creates OS boot images. This application integrates and
chains boot modules with one another to organize a complete bootloader chain. They are necessary to bring
the operating system to a working state. The bootstrapping package architecture reflects the principal stages of
the computer system boot process. Each set of boot modules is connected to the particular boot stage and forms
a layer that is responsible for performing its own clearly defined set of functions and relies on clearly defined
inter-layer interfaces to strictly isolate dependencies on the boot device, firmware and the specifics of the boot-
loaded operating system.

The paper presents the implementation of the described architecture for boot image generation designed
and implemented for a research multikernel operating system and explains how it boots up.

Additionally, the paper proposes the full separation idea of initialization code out of the operating system
kernel and its movement into the independent OS loader module. Following this idea leads to the exclusion of
the “dead” initialization-related program code from the OS kernel. In the commodity operating systems, such
code runs only once during system boot, however, being the part of the kernel executable binary image, con-
tinues to occupy memory until the system shuts down.

Keywords: boot image, loader, operating system, bootstrapping, image builder, IBM PC.

IBM PC architecture was introduced in the
early 80s and has rapidly become a de facto in-
dustry standard for a wide range of computer sys-
tems [1]. Modern IBM PC compatible computers
use CISC processors with 1A-32 and x86_64 in-
struction set architectures [2]. In this paper, we will
mention only 1A-32 while assuming them both, be-
cause x86_64 is a superset of 1A-32.

IBM PC compatible computers are the example
of ultimately complex and tightly integrated sys-
tems that consist of three major components: hard-
ware, firmware, and software. Like any complex
system, computers are characterized by inertia.
Computers cannot perform user-defined work after
power on immediately. Instead, they should pass
through a comprehensive initialization process to
come into a ready-for-use state. During this pro-
cess, the computer system should properly initial-
ize all its components. Furthermore, they should
cooperate to accomplish this task. The main goal
of software initialization is a bootstrapping of the
operating system kernel.

This paper focuses on the Trapper architectu-
re — the operating system bootstrapping package
(OSBP) for IBM PC compatible computer sys-
tems. The bootstrapping package includes a three-

210

layer set of independent modules and an applica-
tion for their chaining during boot image assem-
bling. We refer to this application as the Boot Im-
age Builder (BIB).

A requirement to OSBP is to facilitate booting
of various operating systems from a wide range of
different boot devices and on machines with dif-
ferent types of firmware. Trapper design aims to
be flexible and extensible to be able to support
other types of boot devices, firmware, and a wide
range of operating systems of different architec-
tures with minimal additional investments.

Trapper design has two principal goals. First of
all, it targets primarily operating systems with non-
traditional architectures, while commonly used al-
ternatives are focusing on operating systems with
a monolithic kernel like Linux and Windows. Sec-
ond, Trapper is a light-weight solution that creates
a minimalistic boot image for explicitly specified
boot scenario, while widespread solutions like
GNU GRUB represent heavy-weight multi-pur-
pose multiboot packages. Nowadays, the most ex-
perimental and research operating systems imple-
ment either their private booting environments or
invest significant efforts into bidirectional adapta-
tion between OS and existing booting solution.

mailto:klimenkov@bsuir.by

Tpozpammmvle npodykmel u cucmemot /Software&Systems

2 (33) 2020

Furthermore, we did not find any publications
highlighting such issues. Almost all OS-related pa-
pers tend to omit this information. The secondary
goal of this paper is to fulfill this gap. Moreover,
Trapper supports an idea of complete separation of
initialization code from OS kernel, which is espe-
cially advantageous for minimalistic OS kernels.

IBM PC boot process

A common way to initialize a computer system
is the following. Immediately after power-up, each
computer system processor performs hardware in-
itialization and an optional built-in self-test
(BIST). During this process, the system places
each computer processor into a predefined well-
known state. For example, 1A-32 processors set
registers to a known state, switch the CPU in real-
address mode, invalidate the internal caches,
translation lookaside buffers (TLBs), and the
branch target buffer (BTB). Next, computer sys-
tems with multiple CPU cores on the board (mul-
ticore processor or multiple processors) execute
protocol of multiple processor initialization. The
goal of this protocol is to select one processor
(bootstrap processor (BSP)) that will continue the
boot process.

A computer places the rest of CPUs (applica-
tion processors (APs)) in a halted state. The first
instruction that is fetched and executed by BSP,
following a hardware reset, is located at a hard-
wired physical address called a reset vector. For
the 1A-32 platform, the 16-bytes reset vector lies at
the address FFFFFFFOH [3]. The EPROM con-
taining the software-initialization code must be lo-
cated at this address and performs a jump to the
initialization code of computer system firmware
that is also usually stored at ROM.

The IBM PC firmware, in its turn, performs
several steps to prepare the system for work. The
main action is RAM detection and initialization.
First, firmware detects the installed RAM type and
guantity and performs a simple memory test on it.
Then, firmware detects, enumerates, configures,
initializes and performs power-on self-test on
every bus and almost every hardware device on the
system. Firmware stores all information about the
hardware configuration of a computer system as
well as the memory map and then will pass it to the
bootloader. After that, firmware chooses a boot de-
vice and reads a loader from it into the memory.
Finally, it transfers control to the just read loader.

The main goal of the loader is to bring the en-
tire boot image into the memory. For that purpose,
the loader uses some configuration stored in non-

volatile memory. This config contains information
about the source and target location of the boot im-
age, as well as its size. Types of the firmware and
the used boot device define a loader code because
different boot devices require different access
methods. At the same time, the loader should be
tiny and conform with the boot specification of the
firmware.

The bootstrapping module depends on the firm-
ware, and its goals are to bring the computer sys-
tem into a predefined and firmware independent
state and to collect and unify the information about
a computer system. This information includes a
multiprocessor configuration (number and IDs of
CPUs present in the system) and a memory map
and then is passed by the bootstrapper to the boot-
loader. The bootstrapper also switches the 1A-32
processor from real into protected mode. The con-
ceptual goal of the bootstrapper module is to en-
capsulate all firmware related activities and thus to
isolate bootloader from firmware. The bootstrap-
per defines a firmware-independent interface to
the bootloader to achieve this.

Finally, the bootloader finishes the operating
system boot process. Bootloaders depend on an op-
erating system. Their purpose is to prepare and in-
itialize a kernel. A bootloader not only initializes
kernel data structures but also switches a processor
into the final mode of functioning (enables virtual
memory and sets up descriptor tables), bootstraps
application processors of the system, and initial-
izes an initial set of applications. A bootloader ter-
minates its job by passing control to the entry point
of the first application that will already run under
kernel control and continue the initialization of the
OS environment and services.

Figure 1 shows the principal model of the com-
puter system boot process. It demonstrates the
main stages of the process and how the OSBP ar-
chitecture maps them.

Green boxes in Figure 1 represent three layers
of the OSBP architecture. They operate in the en-
vironment with one or two internal and one exter-
nal interface. Both loader and bootstrapper are
stick to the firmware interface while the bootloader
sticks to the specification of the operating system
and especially of its kernel. At the same time, a
loader, a bootstrapper, and a bootloader are inter-
facing between each other via internal interfaces.
The interface between a bootstrapper and a boot-
loader makes it possible to separate dependencies,
while the interface between a loader and a boot-
strapper creates an opportunity to generalize firm-
ware dependencies. Trapper tries to use these op-
portunities and replicates the principal model

211

TIpoepammmsie npooykmul u cucmemoi /Software&Systems

2 (33) 2020

Hardware Dependent

Firmware Dependent

OS Kernel

Initialization " Use.

CPU Reset Vector Firmware

Loader

(6N
initialization
services

Bootstrapper Bootloader

Boot Device Dependent

Fig. 1. A principal model of a computer system boot process

Operating System Dependent

structure to create a highly flexible and extensible
operating system bootstrapping package.

Trapper OSBP architecture

Figure 2 depicts the Trapper OSBPdesign,
which allows flexible and easy construction of
boot images for various types of computers and op-
erating systems. The framework consists of a boot
image builder application and three buckets of in-
dependently designed and implemented boot mod-
ules: a bucket of loaders, a bucket of bootstrappers,
and a bucket of bootloaders.

Each bucket of boot modules relies on two in-
terfaces: one external and one internal. Internal

interfaces are standardized to allow independent

development and implementation of each boot
module. Each module, following the layered archi-
tecture, relies on one and implements another in-
ternal interface. A set of internal interfaces defines
the framework of the Trapper OSBP.

The principal purpose of loader modules is to
bring the entire boot image from boot medium into
the memory. The loader should also have a proces-
sor switched from real into a protected mode.
Loaders rely on the assumption that a boot image
is a single continuous potentially large file both in
boot medium and in memory.

Bootstrappers, in their turn, aim to switch a
processor into the unified and standardized state,
to collect and unify the description of a computer

L
g Loader 1 Loader 2 oo Loader N oaders
Bucket
|
L ¢ cmme ¢ o o o ¢ e ¢ e o e
v
— | Bootstrapper 1 Bootstrapper2 | e« | Bootstrapper N Bootstrappers
Bucket
|
et)
v
Boot
P Image Bootloader 1 | | Bootloader2 | ««. |Bootloader N
Builder
| | |
OS Kernel 1 OS Kernel 2 OS Kernel N OS Loaders
| — Bucket
N |
OS Services 1 ||| | OS Services 2 OS Services N
Boot Image
> Loader1 (¥ Bootstrapper N | Bootloader 2 — OS Kernel 2 — Services 2
Fig. 2. Trapper OSBP architecture

212

Tpozpammmvle npodykmel u cucmemot /Software&Systems

2 (33) 2020

system configuration. Bootloaders generally re-
quire two pieces of information from a bootstrap-
per. The first one is a memory map that describes
the layout of the physical address space. The sec-
ond one is a multiprocessor table that lists CPUs
present in the system.

In contrast to the rest of the modules, Trapper
expects that bootloader development is the respon-
sibility of operating system kernel vendors. Boot-
loader offloads from the kernel all initialization re-
lated code. Its purposes are the initialization of the
CPU, operating system kernel, and an initial set of
OS services. As soon as a bootloader passes con-
trol to the first task, the entire boot process fin-
ishes, and all memory used by it becomes free.

Boot Image Builder application, as its name
implies, is used by system designers to create final
boot images and their installation to the specified
boot devices. Boot Image Builder uses a configu-
ration file and three buckets of boot modules, as
well as a specified target as an input parameter.
Guided by a configuration file, it collects required
boot modules from buckets and installs them into
a boot image, linking modules between each other.

Loaders

Loaders are the most numerous type of boot
modules used in the OSBP. Each loader represents
a particular type of boot device used in the envi-
ronment of specific firmware and is used solely for
bringing the entire boot image from the source
storage into memory. Due to this fact, such mod-
ules are typically tiny (less than a kilobyte) pro-
grams written in assembly language.

Loaders are forced to rely on the underlying
firmware interface and drivers provided by it to ac-
cess the required boot medium and to capture a
boot image from it. For the same reason, frequently
being a part of the boot image, the loader is forced
to store the size of the entire boot image, as well as
offset to the bootstrapper entry point.

According to the convention declared in the
loader/bootstrapper interface, when a loader
passes control to the bootstrapper entry point, the
boot image is already fully loaded into memory.
Thus, neither bootstrapper nor bootloader does not
need to access a boot device to fulfill its require-
ments.

Different firmware affects loader design and
implementation in different ways. For example,
SFI eliminates the need in the loader, because
firmware itself performs all actions expected from
the loader [4]. Furthermore, SFI supports only
booting from system flash memory. Due to this

fact, there is no variability in the types of boot de-
vices. In its turn, UEFI assumes that the loader is a
standalone UEFI application, which is capable of
selecting the right boot image file on the file sys-
tem and read it into memory [5].

The most complicated case is a loader for disk
drives on BIOS firmware. First of all, the disk
drive oriented loader consists of two separate mod-
ules: Master Boot Record (MBR) and Partition
Boot Record (PBR) [6]. Both have a size of 512
bytes. The only purpose of the MBR loader is to
choose boot partition and load its PBR into the
memory. For that purpose, it uses a partition table
that is also a part of MBR (Fig. 3). In its turn, PBR
is a conventional loader that holds information
about the boot image source location and size and
reads it into the memory from the disk drive.

0 446 510

MBR
[+ Signature
(OxAAS55)

Part.

Boot Code Table

Fig. 3. Structure of the MBR

The PXE loader for BIOS-based computer sys-
tems, in turn, also implemented as a separate bi-
nary not included in the boot image. It uses PXE
API [7] provided on top of BIOS API to download
the boot image hosted on the remote TFTP server
[8]. The boot image itself is a separate file. By de-
sign, PXE-BIOS and HDD-UEFI loaders, in con-
trast to the HDD-BIOS loader disk sectors-ori-
ented design, follow the same conceptual file-
oriented design but use different infrastructures.

Bootstrappers

The role of bootstrappers is to isolate operating
system loaders from firmware. Therefore, all code,
required to communicate with firmware, concen-
trates in bootstrapper modules. The bootstrappers
layer relies on the interface provided by the loaders
layer, and, in its turn, provides an interface for the
bootloader layer. The main functions of the boot-
strapper module are:

— memory map gathering,

— gathering of the list of available processors,

— disabling interrupts on the interrupt control-
ler.

However, each implementation uses its firm-
ware to accomplish them.

Currently, there are three well-known firmware
interfaces for the IBM PC compatible computer
systems: BIOS, UEFI, and SFI (Fig. 4). Therefore,

213

TIpoepammmsie npooykmul u cucmemoi /Software&Systems

2 (33) 2020

I I
cli|c |
RIP|I|P|R I R| C
Afulllufal | [AfP
M ! M | M| U
ACPI :
I I
BIOS I UEFI I SFI
| |
Fig. 4. Firmware and Bootstrappers

there are three bootstrapper modules available in
the OSBP.

BIOS is a de facto standard for the IBM PC
compatible computer systems. It operates in the
16-bit real mode of CPU and has inherited a lot
of legacy features and functions. In fact, BIOS
bootstrapper uses only two BIOS functions: int
0x15-E820 [9] for querying memory map and int
0x10-0E for printing error messages on the screen.
Bootstrapper captures a list of available processors
from ACPI tables [10].

Intel has developed UEFI as a modern and
standardized successor of BIOS. In contrast to
BIOS, UEFI provides an advanced infrastructure
for bootstrappers. It provides an interface for ob-
taining a memory map, but, like a BIOS, relies on
the ACPI for enumeration of available processors.

While UEFI is a complete full-featured BIOS
replacement for high-end computer systems (spec-
ification consists of 2899 pages) [5], SFI is a sim-
plified BIOS successor and is extremely concise
(specification contains ten pages) [4] and conven-
ient for use in embedded systems. It implements an
interface in terms of tables for both obtaining a
memory map and a list of available processors.

Bootloader

Nowadays, this layer is filled only by one mod-
ule for our research multikernel operating system.
According to our approach, microkernel and
loader are designed and developed in pairs, where
bootloader offloads initialization from the kernel.
As a result, microkernel does not contain pieces of
“dead code” that runs only once during system
startup. On the other hand, the bootloader is forced
to have detailed knowledge about memory layout
used by the kernel, as well as about all its internal
data structures.

The bootloader of our multikernel OS (Fig. 5)
divides the physical memory of a computer into
zones and assigns them to processors. By doing

214

this, it creates logical domains, each of which will
be used by a separate OS node and managed by its
kernel. Bootloader installs appropriate compo-
nents of the boot image into the created domains to
complete the OS setup. Finally, the bootloader per-
forms startup application processors and initializes
kernel data structures in parallel on all OS nodes.

The bootloader ensures that each processor is
in the state expected by the microkernel. As a part
of this process, it initializes page tables and ena-
bles virtual memory.

As a part of the initialization process, the boot-
loader setups not only the kernel but also at least
one user-mode application. This application or a
set of applications initialized by bootloader plays
the role of the Init process and continues self-de-
ployment of the operating system. Once the boot-
loader has its work finished, it passes control di-
rectly to the Init application, bypassing the kernel,
but that Init application executes already under OS
kernel control.

Boot Image Builder

The Boot Image Builder is a glue that unites all
other parts of the framework. Implemented as a
command-line tool to facilitate automation, it as-
sembles the boot image from the boot modules
captured from the buckets under the guidance of
the XML-based configuration file passed to its in-
put.

As mentioned earlier, the main task of the Boot
Image Builder is to chain boot modules as well as
OS kernels and an initial set of applications into a
single image file. Guided by metadata that came
with loaders, the Boot Image Builder can separate

’ Bootstrapper { Loader ‘
[
| Bootloader A I I I
l ®5P) "l OS Kernel A || Bootloader B (AP) | 0OS Kernel B
T T eneen 1 !
| ode A I 0S Node B |
| cPU II cPU :
I I !
: Core A :: Core B :
| BSP |) AP !
I IRAM 1 i RAM 2 | |
! i)
e e R e
I |RAM 1 “ RAM2 | |
: Core C “ Core D :
I AP I AP I
| Il |
: CPU ” CPU :
| 0S Node C 1 05 Node D |
e | EO J
BootloaderC(AP)} { OS Kernel C BootloaderD(AP)} OS Kernel D ‘
Fig. 5. Boot loading of multikernel OS

Tpozpammmvle npodykmel u cucmemot /Software&Systems

2 (33) 2020

loaders from the boot image, which is the case of
PXE-BIOS and GPT-HDD loaders. Additionally,
it can install the final boot image into the specified
disk partition. Finally, the Boot Image Builder has
facilities for disk partitioning and supports both
partitioning types: MBR and GPT. The MBR
loader module is an exceptional component of
OSBP.

At the same time, Boot Image Builder can em-
bed a dedicated configuration portion into a boot
image for later use by the bootloader. During em-
bedding, it converts this portion of the configura-
tion from XML into a specific binary form.

In our case, we have symmetric multikernel OS
for the SMP computer system. Due to this fact, we
have one type of kernel and respective bootloader,
but that loader is capable of working in two modes:
BSP and AP. BSP processor enables the boot-
loader BSP mode in which it performs deployment
of the entire operating system over the application
processors. BSP loader copies itself and an appro-
priate kernel to the memory zones assigned to the
application processors to accomplish this job.
Then, it starts up the application processors in such
a way that instances of bootloader copies run in the
AP mode, and thus, skip the OS deployment step.
The Boot Image Builder assembles the boot image
so that it contains only one instance of each boot
module type including kernels and loaders.

Another feature of the Boot Image Builder is
that it can parse executable files in PE format. Mi-
crokernel and its bootloader are built by the Mi-
crosoft C++ compiler as a single section PE exe-
cutables. First, the Boot Image Builder extracts
and puts into the boot image only the code sections
of both files. Second, it performs “linkage” be-
tween a bootloader and a kernel. The kernel uses
table-based dispatching in specific cases. The ex-
port table of kernel executable binary stores the ad-
dresses of the handler functions. In its turn, the

bootloader imports these addresses through its im-
port table. In the operating system environment,
OS makes such “linkage” at run time. In the case
of OSBP, the Boot Image Builder performs such
linkage during boot image assembling by filling a
bootloader import table by actual addresses of the
handler-functions of the kernel.

Conclusion and Outlook

This paper presents the architecture of Trap-
per — the operating system bootstrapping package
developed to facilitate booting of operating sys-
tems with alternative architectures. Trapper pro-
vides a flexible framework for building boot im-
ages targeting IBM PC compatible computer sys-
tems based on 1A-32 processors. We have
demonstrated our design based on three layers of
boot modules and have pointed out the importance
of interfaces between them for strict separation of
dependencies from types of boot devices, firm-
ware, and operating systems. In this context, we
have presented an example of implementing OSBP
and its components, including loaders, bootstrap-
pers, bootloaders, and the Boot Image Builder ap-
plication. We have also shown that our architecture
provides a flexible environment that can be easily
extended to support the additional types of boot de-
vices, firmware, and other operating systems.
Moreover, we have demonstrated how our OSBP
works in the case of loading the multikernel oper-
ating system and how the full separation of initial-
ization code works for our model of co-design and
co-development of microkernel and its bootloader.
Although our framework was designed and imple-
mented for supporting IBM PC compatible com-
puters based on processors with 1A-32 and x86_64
instruction set architectures, we hope that it can be
adopted to support processors with other instruc-
tion set architectures.

Acknowledgements. The research and development have been supported by the Belarusian State University
of Informatics and Radioelectronics. The authors would especially like to thank Peter Brancevich, Svyatoslav
Kulikov, and Kirill Surkov for their support and assistance.

References

1. Mazidi M., Mazidi J. The 80x86 IBM PC and Compatible Computers: Assembly Language, Design, and

Interfacing. Prentice Hall Publ., 2003, 1024 p.

2. 1A-32 Intel Architecture Software Developer's Manual. Vol. 3: System Programming Guide. 2002.
Available at: https://pdos.csail.mit.edu/6.828/2003/readings/intelv3.pdf (accessed September 15, 2019).

3. Pelner J.M., Pelner J.A. Minimal Intel Architecture Boot Loader: Bare Bones Functionality Required
for Booting an Intel Architecture Platform. 2010. Available at: https://www.cs.cmu.edu/~410/doc/mini-

mal_boot.pdf (accessed September 15, 2019).

4. Brown L. The Simple Firmware Interface. Proc. 2009 Ottawa Linux Symp., Montreal, Canada, 2009,
pp. 55-60. Available at: https://www.kernel.org/doc/ols/2009/01s2009-pages-55-60.pdf (accessed September

15, 2019).

215

TIpoepammmsie npooykmul u cucmemoi /Software&Systems 2 (33) 2020

5. Unified EFI Forum, Inc. Unified Extensible Firmware Interface Specification, Ver. 2.7. 2017. Available
at: http://www.uefi.org/sites/default/files/resources/UEFI_Spec_2_7.pdf (accessed September 15, 2019).

6. Chelliah B., Vidyadharan D.S., Sulekha D., Thomas K.L. Combating information hiding using forensic
methodology. Proc. 6th Intern. WDFIA, London, UK, 2011, pp. 69-75. Available at: https://pdfs.seman-
ticscholar.org/4a48/520523bc2e3ef9b52163200ae1b1473955d8.pdf (accessed September 15, 2019).

7. Preboot Execution Environment (PXE) Specification, Ver. 2.1. 1999. Available at: http://www.pix.net/
software/pxeboot/archive/pxespec.pdf (accessed September 15, 2019).

8. Sollins K. The TFTP Protocol (Revision 2). 1992. Available at: https://tools.ietf.org/html/rfc1350 (ac-
cessed September 15, 2019).

9. Yao J., Zimmer V.J., Fleming M. White Paper: A Tour Beyond BIOS Memory Map and Practices in
UEFI BIOS. 2016. Available at: https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_
Beyond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.pdf (accessed September 15, 2019).

10. Advanced Configuration and Power Interface Specification, Revision 2.0a. 2002. Available at: https://
www.intel.com/content/dam/www/public/us/en/documents/articles/acpi-config-power-interface-spec.pdf (ac-
cessed September 15, 2019).

11. Microsoft Portable Executable and Common Object File Format Specification, Revision 6.0. 1999.
Available at: https://courses.cs.washington.edu/courses/cse378/03wi/lectures/LinkerFiles/coff.pdf (accessed
September 15, 2019).

VIIK 004.451.8 Jlata nomauwm craten: 26.09.19
DOI: 10.15827/0236-235X.130.210-217 2020. T. 33. Ne 2. C. 210-217

Trapper: nporpaMMHbIii MaKeT AJIA CO3IaHUS 3arpy304HBIX 00pa30B, NMpeIHA3HAYEHHBIX
nJs ucnogb3oanns B |IBM PC-coBMecTHMBIX KOMIBIOTEPHBIX CHCTEMAaX

E.H. Knumenxos *, acnupanm, klimenkov@bsuir.by

! benopycckuil cocydapcmeentvlii yHusepcumem uH@GOpMamuky u paouodieKmpOHUuK,
2. Munck, 220013, Pecnybauxa benapyce

B cratbe npezcTaBneH 0030p npoiiecca HavanbHO 3arpy3ku |IBM PC-coBMeCTHMBIX KOMITBIOTEPHBIX CH-
CTEM M IPEUI0KEHa apXUTEKTypa MPOrpaMMHOTO ITaKeTa IPeIHa3HAYEHHOTO JJIsl CO3/IaHMs 3arpy304HBIX 00-
pa3oB, KOTOpbIe HEOOXOANMBI /IS ITOJTOTOBKH U 3aITyCKa ONEPAlMOHHON CHCTEMBI, 1 OPUEHTHPOBAHHOTO Ha
MOJAEPKKY 3arpy3KH OIEPALMOHHBIX CUCTEM C albTEPHATUBHBIMU APXUTEKTYPAMHU, TAKUMHU KaK MUKPOSIPO-
sIIEpHBIE, 3K304peHble 1 MHOTosaepHbIe OC.

JlanHast cucTeMa NpeCTaBIsIeTCs B BUJIE TPEX OTIENIBHBIX HAOOPOB HE3aBUCHMBIX 3aTrpy304YHBIX MOJYJIEH,
JIOTIONIHEHHBIX npuioxkeHnreM Boot Image Builder, npeanasHaueHHBIM A7 CO3IaHMS 3arPY304HBIX 00pa3oB
OTIEPAIMOHHON CHCTEMBI ITyTeM MHTETPAaIiH 3arpy309HBIX MOJYJIeH B eIUHBIN OMHAPHBIA 00pa3 1 CBA3BIBA-
HUS UX JIPYT C APYTOM JUIS OPTaHW3ALWH [EIOCTHON LEMOYKH 3arpy3dunKOB, HEOOXOMMOM A IPUBEICHHUS
OTIEPAIlMOHHOM CHUCTEMBI B PabOTOCIIOCOOHOE COCTOSHHE. APXHUTEKTypa IpeajiaraeMoi IMporpaMMHON CH-
CTeMBI OTPaXKaeT MPHUHIMIHAIBHBIE ITAIbI IPOLIECcCca 3arpy3KH KOMIIBIOTEpHOI cuctemsl. Kaxkprit Habop 3a-
TPY304HBIX MOJTyJIEH CBS3aH C OTMpeACISHHBIM 3TAllOM 3arpy3KH U 00pa3yeT CIIoi, penarommii CBOi COOCTBEH-
HBII YETKO ONpeJIeNIeHHbII Ha0Oop 33124 ¥ ONIMPAIOIINICS Ha YETKO OIPE/ICIEHHBIE MEXCIIOHHbIE HHTEp(EIChI
JUIL CTPOTOM M30JSILIMM 3aBHCUMOCTEH OT 3arpy304HOTO YCTPOMCTBA, HIKEJIEXKAIIEr0 BCTPOEHHOTO MpPO-
rpaMMHOTO 00ecredeHus 1 crielnUKH 3arpy)aeMoi OnepaloHHON cucTeMBl. B craTbe mpecraBieHa pea-
JIM3anus IpeaaraeMoi apXUTeKTY bl JUIsl TeHepaly 3arpy309HbIX 00pa3oB, CO3aHHast I UCCIIe0BaTeb-
CKOW MHOTOSIIEPHOM OIlepallnOHHOMN CUCTEMBI, a TAK)Ke OOBSICHSICTCS IPOLIECC 3arpy3KH MOCIEAHEH.

Kpome Toro, npennoxeHa uaes MOJHOTO OTAEICHUS KOAA MHUIUAIU3AUH OT KOJA sIpa ONEepalluOHHON
CHCTEMBI M €T0 MEPEMEIIEHHsI B HE3aBUCUMBIH Moylb 3arpy3unka OC. CinenoBaHue 3TOH Haee NPUBOINT K
HCKJIIOYEHHIO MEPTBOTOKO/1A, CBSI3aHHOTO ¢ MHUIHanu3anueil, u3 sapa OC. B TpaguIimoHHbIX OMEpaiOHHBIX
CHCTEMaX TAKOHM KOJI BBIOJIHSETCS €AMHOXKIBI TIPH 3arpy3Ke CUCTEMBI, OJHAKO, OyAydd 4acThIO HCIIOIHSE-
MOTO ABOMYHOTO 00pasa siipa, IPOJOoIDKAET 3aHUMATh ITaMATh Ha BCEM MPOTSKEHUN pabOThl KOMITBIOTEPHOH
CHCTEMBI, BIUIOTh JJO 3aBEPILCHHUS €€ pabOTHL

Knrouesvie cnosa: sazpyszounsiii 0opas, 3a2py3quk, onepayuonnas cucmema, |IBMPC.,

216

http://www.cscan.org/openaccess/?paperid=85
http://www.cscan.org/openaccess/?paperid=85

Tpozpammmvle npodykmel u cucmemot /Software&Systems 2(33) 2020

Hcceneoosanus u paspabomku, nonodxceHHvle 8 0CHO8Y OaHHOU pabomul, ObLIU NPO8edeHbl NPU NOOJepIHCKe
Benopycckoeo I'ocyoapcmeennozo Ynueepcumema Ungopmamuxu u Paduosnexmponuxu. Aemopwi vipa-
arcarom ocobyro bnazooaprocmo I1. bpanyesuuy, C. Kynurxosy u K. Cyprogy 3a nomoup u no00epiicky.

Jlumepamypa

1. Mazidi M., Mazidi J. The 80x86 IBM PC and compatible computers: assembly language, design, and
interfacing. Prentice Hall Publ., 2003, 1024 p.

2. Intel Corp. IA-32 Intel Architecture Software Developer's Manual. Vol. 3: System Programming Guide.
2002. URL.: https://pdos.csail.mit.edu/6.828/2003/readings/intelv3.pdf (mara obpamenus: 15.09.2019).

3. Pelner J.M., Pelner J.A. Minimal Intel Architecture Boot Loader: Bare Bones Functionality Required
for Booting an Intel Architecture Platform. 2010. URL.: https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf
(mara obpamienus: 15.09.2019).

4. Brown L. The Simple Firmware Interface. In Proc. of 2009 Ottawa Linux Symposium, Montreal, Can-
ada, 2009, pp. 55-60. URL.: https://www.kernel.org/doc/ols/2009/01s2009-pages-55-60.pdf (mara obpamienus:
15.09.2019).

5. Unified EFI Forum, Inc. Unified Extensible Firmware Interface Specification, Ver. 2.7. 2017. URL:
http://www.uefi.org/sites/default/files/resources/UEFI_Spec 2 7.pdf (zara obpamenus: 15.09.2019).

6. Chelliah B., Vidyadharan D.S., Sulekha D., Thomas K.L. Combating information hiding using forensic
methodology. Proc. 6th Intern. WDFIA, London, UK, 2011, pp. 69-75. URL.: https://pdfs.semanticscholar.
0rg/4a48/520523bc2e3ef9b52163200ae1b1473955d8.pdf (mara obpamienus: 15.09.2019).

7. Intel Corp. Preboot Execution Environment (PXE) Specification, Ver. 2.1. 1999. URL.: http://www.
pix.net/software/pxeboot/archive/pxespec.pdf (nata o6pamenus: 15.09.2019).

8. Sollins K. The TFTP protocol, revision 2. 1992. URL: https://tools.ietf.org/html/rfc1350 (nara obpa-
wenns: 15.09.2019).

9. Yao J., Zimmer V.J., Fleming M. White Paper: A Tour Beyond BIOS Memory Map and Practices in
UEFI BIOS. 2016. URL: https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Be-
yond_BIOS_Memory Map_And_Practices_in_UEFI_BIOS_V2.pdf (nata o6pamenus: 15.09.2019).

10. Compag Computer Corp., Intel Corp., Microsoft Corp., Phoenix Technologies Ltd., Toshiba Corp. Ad-
vanced Configuration and Power Interface specification, revision 2.0a. 2002. URL : https://www.intel.com/con-
tent/dam/www/public/us/en/documents/articles/acpi-config-power-interface-spec.pdf (mara oGpameHus:
15.09.2019).

11. Microsoft Corp. Microsoft Portable Executable and Common Object File Format Specification, revi-
sion 6.0. 1999. URL.: https://courses.cs.washington.edu/courses/cse378/03wi/lectures/LinkerFiles/coff.pdf
(mata obpamenus: 15.09.2019).

21.]15[HUTUPOBAHUA

KaumenkoB E.W. Trapper: mporpaMMHBIH ITaKeT OAS CO3LaHHA 3arpy304YHBIX 00pas30B, IIpeaHa3Ha-
YEeHHBIX OAd ucnoAb3oBaHUd B IBM PC-coBMeCcTHMEBIX KOMIIBIOTEPHBIX cucteMax // IIporpamMMHbIe
nponykTel ¥ cucreMbl. 2020. T. 33. Ne 2. C. 210-217. DOI: 10.15827/0236-235X.130.210-217.

For citation

Klimiankou Y.I. Trapper: an operating system bootstrapping package for IBM PC compatible com-
puter systems. Software & Systems. 2020, vol. 33, no. 2, pp. 210-217 (in Russ.). DOI: 10.15827/
0236-235X.130.210-217.

217

https://pdfs.semanticscholar.org/4a48/520523bc2e3ef9b52163200ae1b1473955d8.pdf
https://pdfs.semanticscholar.org/4a48/520523bc2e3ef9b52163200ae1b1473955d8.pdf

