Публикационная активность
(сведения по итогам 2021 г.)
2-летний импакт-фактор РИНЦ: 0,441
2-летний импакт-фактор РИНЦ без самоцитирования: 0,408
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,704
5-летний импакт-фактор РИНЦ: 0,417
5-летний импакт-фактор РИНЦ без самоцитирования: 0,382
Суммарное число цитирований журнала в РИНЦ: 9837
Пятилетний индекс Херфиндаля по цитирующим журналам: 149
Индекс Херфиндаля по организациям авторов: 384
Десятилетний индекс Хирша: 71
Место в общем рейтинге SCIENCE INDEX за 2021 год: 196
Место в рейтинге SCIENCE INDEX за 2021 год по тематике "Автоматика. Вычислительная техника": 4
Место в рейтинге SCIENCE INDEX за 2021 год по тематике "Кибернетика" 2
Больше данных по публикационной активности нашего журнале за 2008-2021 гг. на сайте РИНЦ
Добавить в закладки
Следующий номер на сайте
Статьи журнала №2 2019
1. Квантовый генетический алгоритм в задачах моделирования интеллектуального управления и суперкомпьютинг [№2 за 2019 год]Авторы: Ульянов С.В. (ulyanovsv46_46@mail.ru) - Государственный университет «Дубна» – Институт системного анализа и управления, Объединенный институт ядерных исследований – лаборатория информационных технологий (профессор), доктор физико-математических наук; Рябов Н.В. (ryabov_nv95@mail.ru) - Государственный университет «Дубна», Институт системного анализа и управления (аспирант);
Аннотация: В статье рассматривается применение квантового генетического алгоритма для автоматического выбора оптимального типа и вида корреляции в структуре квантового нечеткого логического вывода. В задачах интеллектуального и когнитивного управления с использованием квантовых мягких вычислений и принципов квантового глубокого машинного обучения важно правильно выбрать тип и вид квантовой корреляции. Она используется в качестве дополнительного физического и информационного вычислительного ресурса при формировании законов изменения во времени коэффициентов усиления традиционных регуляторов, находящихся на нижнем (исполнительском) уровне структуры интеллектуальной системы управления. Такой подход важен для реализации адаптивного или самоорганизующегося процесса баз знаний и гарантированного достижения цели управления в условиях непредвиденных ситуаций управления. Успешное решение задачи выбора типа и вида квантовых корреляций позволяет усилить успешный поиск решений алгоритмически неразрешимых проблем на классическом уровне управления. Генетический алгоритм – мощный инструментарий (computational intelligence toolkit) случайного поиска эффективных решений плохо формализованных задач. Однако он обладает большим недостатком при применении на классическом компьютере: низкая скорость работы и зависимость от выбора экспертом пространства поиска решений. В статье рассмотрены виды квантовых генетических алгоритмов, основанных на комбинации квантовых и классических вычислений, а также алгоритм, состоящий только из квантовых вычислений. В таком алгоритме популяция может быть составлена всего из одной хромосомы в состоянии суперпозиции. Погружение в структуру квантового нечеткого вывода квантового генетического алгоритма позволяет получить новый синергетический эффект и реализовать квантовый нечеткий вывод на классическом процессоре. Данный новый эффект основан на извлечении квантовым генетическим алгоритмом информации, скрытой в классических состояниях законов изменения во времени коэффициентов усиления традиционных регуляторов на новую непредвиденную ситуацию управления. Такой синергетический эффект возможен только за счет применения сквозной интеллектуальной информационной технологии квантовых вычислений и отсутствует на классическом уровне применения технологий классических вычислений.
Keywords: quantum computing, quantum genetic algorithm, quantum oracle, simulator, quantum fuzzy inference
Просмотров: 4990
2. Реализация метаязыковой абстракции для поддержки ООП средствами языка Си [№2 за 2019 год]
Авторы: Дергачев А.М. (nmtkeshelashvili@corp.ifmo.ru) - Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (Университет ИТМО) (доцент), кандидат технических наук; Жирков И.О. (igorjirkov@gmail.com) - Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (Университет ИТМО) (тьютор); Логинов И.П. (ivan.p.loginov@gmail.com) - Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (Университет ИТМО) (аспирант); Кореньков Ю.Д. (ged.yuko@gmail.com ) - Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (Университет ИТМО) (аспирант);
Аннотация: В данной работе демонстрируется использование макроопределений высшего порядка для реализации поддержки объектно-ориентированной парадигмы программирования в языке C89 без расширений. Выбор парадигмы программирования является важной задачей, предшествующей реализации программы. В рамках объектно-ориентированной парадигмы программирования описывается широкий класс задач. Многие распространенные высокоуровневые языки общего назначения, такие как C++, C#, Java, предоставляют поддержку этого программирования. Однако применение языков, поддерживающих объектно-ориентированное программирование, не всегда технически возможно из-за отсутствия средств разработки под целевую платформу, в частности, компилятора. Так, например, для предметно-ориентированных процессоров (ASIP) зачастую предоставляется только компилятор языка Си как наиболее распространенного низкоуровневого языка программирования. Кроме того, относительно небольшой размер языка, а также его близость к языку ассемблера позволяют быстро реализовать компилятор для новой архитектуры. Вместе с тем препроцессор языка Си позволяет за счет создания системы макроопределений высшего порядка реализовать сложную логику генерации кода, выходящую за рамки тривиального заполнения шаблона значениями параметров макроопределения. В статье с помощью примеров исходного кода показана реализация инкапсуляции, наследования и полиморфизма. Инкапсуляция делает невозможным обращение к непубличным методам и полям класса извне уже в момент компиляции. Особое внимание авторы уделяют типобезопасности генерируемого кода: введение наследования не означает еще большее ослабление правил типизации языка Си. Результаты исследования предполагают применимость такого подхода для реализации программ, эффективно использующих объектно-ориентированное программирование, при разработке на языке Си в случае невозможности использования современных объектно-ориентированных языков.
Keywords: c, preprocessor, object(oriented programming, metaprogramming, macro definition
Просмотров: 3783
3. Преобразование данных от разнородных систем мониторинга [№2 за 2019 год]
Автор: Бекенева Я.А. (yana.barc@mail.ru ) - Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) (аспирант);
Аннотация: В статье представлен подход к подготовке данных, получаемых от разнородных систем мониторинга, для их дальнейшего анализа методами интеллектуального анализа данных. Основной проблемой анализа данных при мониторинге различных процессов являются различия в описании событий для разных типов источников, в том числе формат представления данных. Кроме того, одно и то же событие может быть описано с помощью данных от разных систем мониторинга. В настоящей работе приведена формальная модель анализируемого процесса, описаны основные проблемы анализа разнородных данных, выделены формальные критерии отнесения записей от разных источников к одному событию. В предлагаемом подходе в качестве источников данных учитываются не только записи, поступающие от различных мониторинговых систем в режиме реального времени, но и учетные базы, используемые для хранения информации. Ключевая идея со-стоит в том, что движущиеся объекты разных типов могут совершать действия как единое целое в рамках исследуемой задачи (например, транспортное средство и водитель). Использование учетных систем позволяет найти взаимосвязи между подобными движущимися объектами и тем самым повысить точность объединения записей, относящихся к одному событию. Предложенный подход был опробован на реальных данных, полученных от предприятия. В результате применения всех описанных преобразований удалось существенно сократить избыточную размерность совокупной таблицы с данными, а также значительно снизить количество пропущенных значений. Данные, анализ которых был затруднительным из-за их разного формата, приведены к единому формату и представлены в виде единой таблицы, удобной для дальнейшего исследования методами интеллектуального анализа данных.
Keywords: data format, events, attributes, data transformations, monitoring systems, heterogeneous sources
Просмотров: 4758
4. Разработка прецедентного модуля для идентификации сигналов при акустико-эмиссионном мониторинге сложных технических объектов [№2 за 2019 год]
Авторы: Варшавский П.Р. (VarshavskyPR@mpei.ru) - Национальный исследовательский университет «МЭИ» (доцент), кандидат технических наук; Алехин Р.В. (r.alekhin@gmail.com) - Национальный исследовательский университет «МЭИ» (ассистент); Кожевников А.В. (antoko@yandex.ru) - Национальный исследовательский университет «Московский энергетический институт» (ассистент);
Аннотация: В статье рассматриваются актуальные вопросы разработки модуля для идентификации сигналов, получаемых во время акустико-эмиссионного мониторинга сложных технических объектов, использующего рассуждения на основе прецедентов (CBR – Case-Based Reasoning). Прецедентные методы и системы (CBR-системы) активно применяются для решения целого ряда задач в области искусственного интеллекта, например, для моделирования правдоподобных рассуждений, в том числе рассуждений здравого смысла, машинного обучения, интеллектуальной поддержки принятия решений, интеллектуального поиска информации, интеллектуального анализа данных и др. Хранение и анализ данных акустико-эмиссионного мониторинга сложных технических объектов в цифровом виде позволили обеспечить требуемую скорость и многовариантность обработки данных, которую бумажная технология не могла обеспечить. С ростом количества разнородных данных увеличился объем работы оператора при выполнении качественного анализа поступаю-щей информации. Для повышения эффективности работы оператора предлагается решение задачи распределения и идентификации рассматриваемых данных акустико-эмиссионного мониторинга с помощью программно реализованного прецедентного модуля (CBR-системы). С использованием разработанного в среде MS Visual Studio на языке C# CBR-модуля для идентификации сигналов акустической эмиссии проведены вычислительные эксперименты по оценке эффективности предлагаемых в работе решений на реальных экспертных данных, полученных в результате выполнения акустико-эмиссионного мониторинга металлических конструкций.
Keywords: acoustic emission, data analysis, the automated information system, case-based approach
Просмотров: 5555
5. Оптимизация периодичности инициализации контроля на основе дублированных вычислений [№2 за 2019 год]
Авторы: Богатырев В.А. (vladimir.bogatyrev@gmail.com ) - Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (Университет ИТМО) (профессор), доктор технических наук; Лисичкин Д.Э. (slayjoker@mail.ru) - Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (магистрант);
Аннотация: Рассматривается дублированная вычислительная система, снабженная средствами оперативного и тестового контроля. Эффективность обнаружения отказов системы определяется полнотой оперативного и периодичностью тестового контроля. Уменьшение интервалов периодичности контроля приводит к снижению готовности системы из-за роста временных издержек на тестирование, но в то же время повышает ее безопасность в результате снижения вероятности функционирования системы в состояниях необнаруженных отказов. В системах с дублированием компьютерных узлов возможны режимы разделения нагрузки, когда узлы независимо выполняют распределяемый между ними поток запросов, и режим дублированных вычислений, когда каждый запрос одновременно выполняется двумя компьютерными узлами при сравнении результатов в контрольных точках. Для дублированных систем с разделением нагрузки имеется потенциальная возможность повышения эффективности контроля в результате периодического перехода в режим дублированных вычислений со сравнением результатов, что позволяет уменьшить издержки на проведение тестового контроля (дублированной системы), инициируя его только в случае несовпадения результатов дублированных вычислений. Цель работы – определение оптимальных интервалов перехода в режим дублированных вычислений для обеспечения максимума вероятности готовности системы к безопасному выполнению функциональных запросов при минимизации простоев и задержек обслуживания. Предложена марковская модель, позволяющая определить вероятность состояний системы, в том числе готовности системы к безопасному функционированию, простоев и опасных состояний необнаруженных отказов. На основе предложенной модели проанализировано влияние периодичности инициализации режима дублированных вычислений на готовность системы к безопасной работе. Показано существование оптимальной периодичности инициализации режима дублированных вычислений, при которых достигается максимум вероятности готовности системы к безопасному функционированию при минимизации простоев системы.
Keywords: Markov’s model, control, duplicated calculations, readiness, reliability, optimality, testing
Просмотров: 5470
6. Item-based recommender system with statistical learning for unauthorized customers [№2 за 2019 год]
Авторы: Филипьев А.В. (avfilipev@gmail.com) - Университет «Дубна», Институт системного анализа и управления (ассистент);
Abstract: The paper aims to reveal that using statistical learning approaches for recommender systems makes personal communication with customers better than the expert opinion regarding this question does. The author uses a cosine similarity distance as a basis for developing a machine learning recommenda-tion model. However, this distance has high calculation costs, therefore the paper considers the ways of solving this problem. The probability matrix of purchasing one item with another was calculated in or-der to weight cosine similarity and to avoid the situation when unpopular products are put at the top of a recommendation list. A weighted sum model joins cosine similarity and probability matrices and buildes recommendation sequences. User-based collaborative filtering is the most popular algorithm to build personal recom-mendation. However, it is useless when it is impossible to identify a user in the system. The developed algorithm based on cosine similarity distances, probability matrix and weighted sums allows building an item-to-item recommendation model. The main idea of this approach is to offer additional products to clients when only products in a cart are known. The item-to-item recommendation algorithm has shown advantages of using statistical machine learning approaches in order to improve communication with clients through a mobile application and a website. An integrated recommendation module has re-vealed that developing a data-driven culture is a right way of many modern companies.
Ключевые слова: машинное обучение, статистическое обучение, модель взвешенных сумм, вероятности, косинусная мера сходства, кросс-продажи, рекомендательная система
Просмотров: 5305
7. Метод ситуационного прогнозирования появления новых технологий Индустрии 4.0 [№2 за 2019 год]
Авторы: Андреев А.М. (arkandreev@gmail.com) - Московский государственный технический университет им. Н.Э. Баумана (доцент), кандидат технических наук; Березкин Д.В. (berezkind@bmstu.ru) - Московский государственный технический университет им. Н.Э. Баумана (доцент), кандидат технических наук; Козлов И.А. (kozlovilya89@gmail.com) - Московский государственный технический университет им. Н.Э. Баумана (младший научный сотрудник);
Аннотация: В статье рассматривается задача автоматизированного прогнозирования появления и развития инновационных технологий на основе анализа потоков больших данных. Показана актуальность выполнения такого прогнозирования в условиях Индустрии 4.0. Рассмотрены существующие под-ходы к прогнозированию, выявлены их недостатки с учетом специфики решаемой задачи и осо-бенностей больших данных. Для решения задачи предложено использовать разработанный авторами гибридный подход к анализу потоков данных. Он позволяет выполнять автоматизированный мониторинг и прогнозирование развития ситуаций на основе обработки потоков разнородных данных, представленных, в частности, текстовыми документами, числовыми рядами, записями в БД. Предложенный подход включает обнаружение в потоке данных событий, формирование ситуаций, определение возможных сценариев их дальнейшего развития и подготовку предложений для лиц, принимающих решения. Приведены модели событий, используемые при работе с потоками текстовой и структурированной информации. Для выделения событий, относящихся к инновационным технологиям, в по-токе текстовых документов используется метод на основе инкрементальной кластеризации. Также с помощью инкрементальной кластеризации выполняется формирование ситуационных цепочек, отражающих развитие технологий с течением времени, при анализе потока структурированных данных. Описан метод формирования сценариев дальнейшего развития анализируемой инновационной технологии на основе принципа исторической аналогии. Предложенный метод позволяет определять наиболее вероятный сценарий с помощью логистической регрессии, а также выделять оптимистический и пессимистический сценарии на основе метода анализа иерархий. Каждый из сформированных сценариев снабжается рекомендациями по действиям, которые необходимо предпринять для способствования или препятствования развитию технологии по этому сценарию. Приведены примеры ситуаций, построенных на основе анализа потоков текстовых и структурированных данных, а также пример сформированных сценариев и предложений для одной из ситуаций.
Keywords: fourth industrial revolution, industry 4.0, situational analysis, forecasting, decision support system, scenario analysis, clusterization
Просмотров: 5617
8. Social features of mobile application development [№2 за 2019 год]
Авторы: Мостяев А.И. (reistlin12@gmail.com) - Московский государственный университет им. М.В. Ломоносова, факультет вычислительной математики и кибернетики (Мостяев);
Abstract: Modern mobile application development technologies evolved at an unprecedented rate seeking for newer and newer user demands. Developers are working hard to not fall behind and try to maintain the popularity of their applications in all kinds of ways, introducing new amazing features and options. The paper describes the most common features of mobile applications and their support comparing with desktop analogs. Considering these features during mobile application development and maintenance should eliminate a misunderstanding between mobile users and mobile developers. It will be usefull for both sides. The paper starts with a quick overview of the mobile application history, giving a picture of the evolution speed in the industry. Further, it describes the most common mobile application features. A special attention is given to both technical details and usability of applications. The following features are marked: close integration with an operating system, short sessions, internet service integration and variety of mobile devices. The development features are a special life cycle and integration of third-party internet services. A special attention is paid to the quality of application localization, localization features for some countries and working with text and visual data in application stores. In conclusion, the paper gives a list of requirements to a modern successful application. The author also mentiones an interesting fact that development features of these applications are related to the cur-rent social trends.
Ключевые слова: поддержка приложений, разработка приложений, архитектура приложений, кроссплатформенные приложения, мобильные приложения
Просмотров: 3629
9. Прогнозирование состояния технического объекта с применением методов машинного обучения [№2 за 2019 год]
Авторы: Клячкин В.Н. (v_kl@mail.ru) - Ульяновский государственный технический университет (профессор), доктор технических наук; Жуков Д.А. (zh.dimka17@mail.ru) - Ульяновский государственный технический университет, кафедра «Прикладная математика и информатика» (аспирант);
Аннотация: Распознавание состояния технического объекта во время его функционирования обеспечивает раннее обнаружение неисправностей и их устранение в процессе обслуживания. Часто диагностика сводится к разделению состояний объекта на два класса: исправное и неисправное. При решении такой задачи могут быть использованы методы машинного обучения, предназначенные для бинарной классификации. В данной статье в качестве исходных данных рассматриваются известные результаты (прецеденты) оценки состояния системы: при заданных значениях контролируемых показателей техническая система исправна или неисправна. Используется множество различных подходов к бинарной классификации: классические статистические модели, методы, специально ориентированные на машинное обучение, композиционные методы и другие. Для повышения качества прогнозирования может быть использован агрегированный подход – комбинация нескольких методов классификации. Разработанная в среде Matlab программа обеспечивает прогнозирование состояния системы по заданным показателям ее функционирования. Пользователь имеет возможность выбрать объем контрольной выборки, метод обучения, критерии качества распознавания. Было проведено численное исследование на двух примерах. Оценивалась исправность гидроагрегата по критерию стабильности вибраций по результатам мониторинга показаний датчиков, установленных в различных точках. Наилучшим оказался агрегированный классификатор, включающий градиентный бустинг и логистическую регрессию. При анализе исправности системы во-доочистки по показателям качества питьевой воды максимальное значение F-критерия имело место при агрегировании нейронной сети и бэггинга деревьев решений.
Keywords: technical diagnostics, binary text classification, aggregated approach, matlab, hydroelectric set, water treatment system, f-criterion
Просмотров: 5479
10. Архитектура системы мониторинга производственных процессов в условиях географической распределенности производства [№2 за 2019 год]
Авторы: Соломаха Г.М. (gsolomakha@yandex.ru) - Тверской государственный университет (профессор кафедры математической статистики и системного анализа), доктор физико-математических наук; Хижняк С.В. (stanislav.khizhnyak@gmail.com) - Тверской государственный университет (аспирант);
Аннотация: В работе представлена архитектура информационной системы мониторинга производственных процессов, предоставляющая возможность получения актуальной детальной информации о географически распределенном производстве, а также наблюдения за показателями, являющимися агрегациями других показателей. Система позволяет работать в распределенном режиме, что значительно упрощает внедрение и эксплуатацию в условиях географической распределенности производства. Все компоненты, подсистемы, а также протокол и порядок их взаимодействия ориентированы на использование как на географически распределенных, так и на других производствах. В статье приведены основные недостатки существующих решений относительно работы в условиях географической распределенности производства, а также требования к архитектуре си-стемы, обладающей необходимыми для работы в таких условиях качествами, сформированными на основе выявленных недостатков. Рассмотрены основные подсистемы и компоненты предлагаемой информационной системы, их назначение, функции и принципы работы. Дано описание про-токола взаимодействия между подсистемами и компонентами, обоснован подход к разработке та-кого протокола. Описаны порядок обработки данных, способ их хранения, а также формат и сиг-натура. Данные представлены в формате JSON, а в качестве модели обмена между компонентами выбрана событийная. Обоснован подход к проектированию архитектуры, приведены основные технологии и средства, необходимые для разработки системы, с обоснованием их выбора, а также схемы архитектуры в разных комбинациях распределенных компонентов. Рассмотрен ряд примеров функционирования отдельных компонентов и их взаимодействия. На основе проведенных исследований сделаны выводы и предположения о возможных перспективах развития рассматриваемого в статье направления исследований.
Keyword:
Просмотров: 3907
| 1 | 2 | 3 | Следующая → ►