ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2017 г.)
2-летний импакт-фактор РИНЦ: 0,500
2-летний импакт-фактор РИНЦ без самоцитирования: 0,405
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,817
5-летний импакт-фактор РИНЦ: 0,319
5-летний импакт-фактор РИНЦ без самоцитирования: 0,264
Суммарное число цитирований журнала в РИНЦ: 6012
Пятилетний индекс Херфиндаля по цитирующим журналам: 404
Индекс Херфиндаля по организациям авторов: 338
Десятилетний индекс Хирша: 17
Место в общем рейтинге SCIENCE INDEX за 2017 год: 527
Место в рейтинге SCIENCE INDEX за 2017 год по тематике "Автоматика. Вычислительная техника": 16

Больше данных по публикационной активности нашего журнале за 2008-2017 гг. на сайте РИНЦ

Вход


Забыли пароль? / Регистрация

Добавить в закладки

Следующий номер на сайте

4
Ожидается:
16 Декабря 2018

Алгоритмы и программное обеспечение распознавания низкоконтрастных изображений при оценке качества стали

Статья опубликована в выпуске журнала № 3 за 2008 год.[ 18.09.2008 ]
Аннотация:
Abstract:
Авторы: Логунова О.С. ( logunova66@mail.ru) - Магнитогорский государственный технический университет им. Г.И. Носова, Магнитогорск, Россия, доктор технических наук, Макарычев П.П. () - , ,
Ключевые слова: низкоконтрастные изображения, оценка качества стали, обеспечение, алгоритмы
Keywords: , , , algorithms
Количество просмотров: 10248
Версия для печати
Выпуск в формате PDF (2.59Мб)

Размер шрифта:       Шрифт:

Повышение качества продукции в любой из промышленных отраслей является одной из первостепенных задач. Эта проблема наиболее актуальна для предприятий металлургической промышленности при больших объемах производства и ответственном назначении изделий. Повышению достоверности информации о качестве металлургической продукции способствует развитие современных средств вычислительной техники и возможность совершенствования алгоритмов по автоматизированному распознаванию и анализу изображений.

В данной работе автор представляет алгоритмические основы системы автоматизированной оценки внутреннего качества непрерывно-литых заготовок, выпускаемых на ОАО «Магнитогорский металлургический комбинат», о разработке которой сообщалось в [1].

Особенности структуры низкоконтрастного изображения серных отпечатков

Не вдаваясь в подробности технологии подготовки образцов для оценки качества при выпуске непрерывно-литой заготовки, следует отметить, что в качестве исходных данных используются сканированные и оцифрованные изображения серных отпечатков от поперечных темплетов.

В изображениях области с пониженной яркостью соответствуют нарушению сплошности заготовки и образуют внутренние дефекты. Исследование структуры электронных изображений серных отпечатков показало, что они обладают следующими свойствами:

-   цветовая градация изображения – оттенки серого;

-   форма областей с пониженной яркостью – нерегулярная;

-   координаты проявления областей с пониженной яркостью – случайные;

-   размеры областей с пониженной яркостью – случайные;

-   размер полного изображения – от 100´100 мм до любого произвольного размера.

Указанные особенности затрудняют использование наиболее распространенных технологий анализа изображений, основанных на применении шаблонов, классификации или нейросетевых методов. Фактически нельзя предсказать, какого объема и какого содержания должны быть обучающие выборки для охвата полных наборов вариантов возможного расположения и форм областей пониженной яркости, соответствующих изображению дефектов в полости заготовки.

Алгоритм поиска связанных областей нерегулярной формы со случайным проявлением

Для выделения областей с пониженной яр- костью нерегулярной формы со случайными координатами проявления был использован рекурсивный алгоритм поиска по ортодоксальным направлениям. Перед применением алгоритма рекурсивного поиска к изображению серного отпечатка применяются функции фильтрации (1) и (2), переводящие изображение в оттенках серого к монохромному виду.

Функция для выделения точки со сниженной яркостью на изображении серного отпечатка имеет вид:

      (1)

где F(x,y) – функция относительного цвета в каждой точке изображения; Qs – отношение Штреля; h – эмпирическая величина, определяющая разность между средней яркостью отпечатка и яркостью в выбранной точке, при которой считаем точку дефектной [2].

Бинарная функция для отметки дефектной точки на изображении имеет вид:

               (2)

Следует отметить, что с помощью функции (2) происходит фиксирование факта наличия точки с пониженной яркостью: 1 – точка имеет пониженную яркость по отношению к общему серому фону изображения, 0 – точка имеет яркость выше среднего серого фона изображения и не может относиться к области внутреннего дефекта. Применение функции (1) позволило получить цифровые матрицы для каждого изображения серного отпечатка, содержащие инвертированные значения цветов каждой точки.

Рекурсивный алгоритм поиска связанных областей может быть представлен последовательностью шагов:

1) просмотр исходного изображения начинается с точки, координаты которой (1,1);

2) поочередно просматриваются все точки текущей строки: если все точки белые, переходим к следующей строке; если рассматриваемая точка черная, начинается процедура формирования объекта для области с пониженной яркостью:

а) запоминается начальная позиция (координаты первой черной точки (x0; y0));

б) определяется цвет четырех соседних точек с координатами: (x0-1;y0), (x0+1;y0), (x0;y0-1) и (x0;y0+1);

в) если цвет всех точек белый, формирование объекта заканчивается, иначе начальная позиция перемещается в первую найденную соседнюю черную точку;

г) повторяются пункты б и в;

д) черные точки, от последней до первой, запоминаются, и формируется массив координат, относящихся к текущей области, цвет точек выделенной области инвертируется (изображение очищается от черных точек);

3) повторяются пункты 1 и 2 до последней точки последней строки изображения.

Схема рекурсивного поиска дефектов представлена на рисунке.

В программной процедуре для реализации рекурсивного алгоритма, помимо включения точки в область и исключения ее из дальнейшего рассмотрения, проверяется местоположение ее в области всего изображения. Чтобы в ходе выполнения алгоритма не выйти за пределы области электронного изображения, возникла необходимость проверки пересечения границы, то есть рассматривается один из девяти случаев расположения точки в области изображения. Это усложняет алгоритм, но обеспечивает корректную обработку данных и правильную адресацию в пределах области.

При своей несложной реализации процедура не является оптимальной с точки зрении количества возможных вызовов. В процессе запоминания точки процедура выполняет максимум четыре рекурсивных вызова функции. В среднем только один из всех вызовов подпрограммы выполняет результативные действия. Таким образом, процедура не производит никаких действий приблизительно 30 % своего рабочего времени. К преимуществам данного алгоритма можно отнести только его простоту в программной реализации.

Программное обеспечение распознавания областей нерегулярной формы

Для реализации алгоритмов распознавания областей с пониженной яркостью на изображении серных отпечатков был разработан программный продукт «Quality & Steel», который позволяет:

1) открывать электронное изображение серного отпечатка;

2) выполнять фильтрацию изображения, оставляя и выделяя точки с пониженной яркостью;

3) выделять связные области с пониженной яркостью;

4) формировать массив объектов для каждой выделенной области с характеристиками: площадь области (в пикселях и мм2), место расположения на изображении, отношение площади одной области к площади всего изображения, %; отношение суммы площадей всех областей к площади всего изображения, %;

5) выполнять оценку выделенных областей в баллах ОСТ 14–4–73 «Сталь. Метод контроля макроструктуры литой заготовки (слитка), полученной методом непрерывной разливки»;

6) накапливать информацию для оценки серии изображений с целью анализа контрольных карт проявления дефектов.

Таким образом, в работе исследована структура изображений, используемых в металлургической промышленности при оценке качества продукции; определены особенности изображений серных отпечатков, позволяющих выявить возможные методы анализа изображения и разработать методику оценки автоматизированными средствами, повышающими достоверность информационной базы промышленного предприятия; разработана система автоматизированной оценки внутренних дефектов непрерывно-литой заготовки, которая может быть использована в системе управления качеством продукции любого предприятия металлургической промышленности.

Список литературы

1.   Логунова О.С., Девятов Д.Х., Нуров Х.Х. Оценка качества непрерывно-литой заготовки статистическими методами с использованием программных средств. // Изв. вузов. Черная металлургия. – 2005. – № 9. – С. 54–58.

2.   Прэтт У. Цифровая обработка изображений. / Пер. с англ. – М.: Мир, 1982. – Кн. 1. – 312 с.


Постоянный адрес статьи:
http://swsys.ru/index.php?page=article&id=1590
Версия для печати
Выпуск в формате PDF (2.59Мб)
Статья опубликована в выпуске журнала № 3 за 2008 год.
Статья находится в категориях: Разработка программных приложений
Статья относится к отраслям: Металлургия

Возможно, Вас заинтересуют следующие статьи схожих тематик: