ISSN 0236-235X (P)
ISSN 2311-2735 (E)
2

16 Июня 2024

Моделирование полета космического аппарата по околоземной орбите в космическом тренажерном комплексе


Тимохин П.Ю. (webpismo@yahoo.de) - ФНЦ НИИСИ РАН (научный сотрудник), Москва, Россия
Ключевые слова: кеплеровская орбита, моделирование, космический аппарат, система визуализации
Keywords: Kepler orbit, modeling, spacecraft, visualization system


     

При подготовке космонавтов активно используются тренажерные комплексы. Одной из важных задач при разработке многих комплексов является моделирование вида земной поверхности, наблюдаемого космонавтом из космического аппарата (КА), летящего по околоземной орбите. В тренажерном комплексе это достигается с помощью подсистемы моделирования и подсистемы визуализации. В подсистему визуализации предварительно загружается виртуальная сцена, которая содержит трехмерные модели КА и Земли, а также виртуальную камеру, связанную с КА. Подсистема моделирования периодически (например, каждые 40 мс) рассчитывает в некоторой системе координат положение и ориентацию динамических объектов и передает их по информационному протоколу в подсистему визуализации. В подсистеме визуализации по полученным данным производится установка трехмерных моделей в виртуальной сцене, а затем вся сцена отображается на дисплей средства наблюдения космонавта [1].

В качестве базовой системы координат для расчета параметров движения динамических объектов можно выбрать геоцентрическую систему, однако часто в системах визуализации выбирают систему координат, жестко связанную с КА. В этом случае КА считается неподвижным, а движение Земли моделируется относительно КА. При этом модель Земли располагается и ориентируется таким образом, чтобы наблюдаемая из КА область земной поверхности совпадала с областью, которую видел бы наблюдатель, если бы начало базовой системы координат располагалось в центре Земли, а КА двигался по орбите вокруг нее. Данная статья посвящена вычислениям положения и ориентации (задаваемой углами Эйлера–Крылова) модели Земли в системе координат, жестко связанной с КА, исходя из заданных параметров околоземной орбиты КА.

Моделирование движения КА по орбите

На околоземном внеатмосферном участке полета КА его центр масс двигается в основном под действием силы притяжения Земли (при условии, что двигатели КА выключены). Если принять, что Земля сферическая и неподвижная, а масса КА пренебрежимо мала по отношению к массе Земли, то движение центра масс КА в гравитационном поле Земли можно смоделировать кеплеровским движением, то есть по кеплеровской траекто- рии [2]. В данной статье рассматривается движение КА по эллиптической траектории (орбите), один из фокусов которой совпадает с центром Земли (рис. 1).

Чтобы полностью определить кеплеровское движение КА, то есть положение и скорость КА в любой момент, в теорию полета вводится набор из 6 независимых параметров, называемых элементами кеплеровской траектории. Это долгота восходящего узла W, наклонение плоскости орбиты к плоскости экватора i, аргумент перигея w, эксцентриситет e, фокальный параметр p, а также время прохождения КА через перигей П орбиты tp. При невозмущенном кеплеровском движении эти параметры остаются постоянными на протяжении всего времени полета КА.

Для определения параметров кеплеровской траектории движения КА в трехмерном пространстве используется абсолютная геоцентрическая система координат EАГ (рис. 1). Начало системы координат OАГ расположено в центре Земли. Ось OАГZАГ совпадает с осью вращения Земли и направлена на Северный полюс. Ось OАГXАГ перпендикулярна ей и направлена в точку весеннего равноденствия V. Ось OАГYАГ дополняет систему координат до правосторонней.

Подпись:  
Рис. 2. Моделирование движения КА 
в неподвижной системе координат ЕАГПоложение КА в плоскости эллиптической орбиты в момент t задается углом J (истинная аномалия) и длиной r радиус-вектора , направленного из центра Земли в центр масс КА. Вычисление J и r в момент t по заданным параметрам орбиты приводится в [2–4].

Движение КА как твердого тела можно смоделировать, определив в каждый момент его положение и ориентацию в системе координат EАГ. В теории полета положение центра масс КА в системе EАГ определяется с помощью сопровождающей системы координат EС. Начало координат OС совпадает с OАГ. Ось OСXC совпадает по направлению с текущим радиус-вектором , ось OСZC – с векторной константой площадей  (рис. 1), а ось OСYC дополняет эти оси до правосторонней системы координат (рис. 2). В этой системе координат центр масс КА всегда имеет координаты (r, 0, 0, 1). Введем дополнительную систему координат EКА, жестко связанную с КА, то есть при движении КА координаты его точек в системе EКА не меняются. Начало координат OКА расположим в центре масс КА, а оси координат направим так же, как в системе EС. Тогда положение и ориентацию КА в системе EАГ можно определить, вычислив матрицу преобразования координат точек КА из системы EКА в систему EАГ.

Из линейной алгебры известно: если в аффинном пространстве имеются системы координат  и , где  и  – ортонормированные векторы базисов, а O и O¢ – начала соответствующих систем координат и E переводится в E¢ с помощью произвольной последовательности поворотов и переносов, последовательно совмещаясь с промежуточными системами координат E1,…, Ek-1, то имеют место следующие соотношения:

                   (1)

где P – координаты точки P в системе E; P¢ – координаты точки P в системе E¢; Mi – матрица, переводящая систему Ei-1 в систему Ei либо путем поворота Ei-1 вокруг оси  на угол a (), или вокруг  на угол b (), или вокруг оси  на угол g () (положительным считается поворот системы координат по часовой стрелке, если смотреть с конца вектора, вокруг которого осуществляется поворот), либо путем переноса Ei на вектор  (). Матрицы , ,  и  имеют вид

 

Матрицы , ,  и  обозначаются в данной статье как , ,  и  соответственно.

Таким образом, преобразование PКА в PАГ можно получить, если мысленно совместить систему EКА с системой EС, а затем с системой EАГ с помощью последовательного переноса и поворотов системы EКА (рис. 2):

·     перенос на вектор  вдоль оси OXКА;

·     поворот на угол u вокруг оси OZC, где u – аргумент широты, u = w + J;

·     поворот на угол i вокруг оси , полученной после первого поворота EС;

·     поворот на угол W вокруг оси , полученной после второго поворота EС.

По формуле (1) результирующий перевод системы EКА в систему EАГ имеет следующий матричный вид: , а преобразование координат PКА в PАГ вид

.                    (2)

Имитация движения КА по орбите в подсистеме визуализации

Подпись:  
Рис. 3. Имитация движения КА в подсистеме 
визуализацииКак отмечалось ранее, движение КА в подсистеме визуализации имитируется путем переноса и ориентации в виртуальной сцене модели Земли относительно неподвижной модели КА (рис. 3).

Модель Земли задается в гринвичской системе координат EГ. Ее начало координат OГ расположено в центре Земли, ось OГXГ направлена в точку пересечения Гринвичского меридиана с экватором, ось OГZГ совпадает с осью вращения Земли и направлена на Северный полюс Земли, а ось OГYГ дополняет оси до правосторонней системы координат. Таким образом, система EГ перемещается и поворачивается вместе с моделью Земли.

Рассматриваемая модель КА в подсистеме визуализации задается в системе координат EКА,В, которая, как и система EКА, жестко связана с КА. В виртуальной сцене система EКА,В остается неподвижной, а виртуальная камера так же, как и EКА,В, жестко связывается с КА.

Пусть в некоторый момент КА расположен и ориентирован относительно неподвижной системы координат EАГ в соответствии с параметрами, задающими его орбиту, и в камере виден некоторый участок земной поверхности. Задача подсистемы визуализации состоит в том, чтобы в виртуальной сцене установить и ориентировать модель Земли (то есть систему координат EГ) относительно неподвижной модели КА (то есть системы EКА,В) так, чтобы в камере был виден в точности тот же участок Земли. Так как камера жестко связана с КА, математически это условие означает, что любая точка P модели Земли будет иметь в системе EКА,В одни и те же координаты PКА,В независимо от того, будет ли расположена и ориентирована EКА относительно EАГ или EГ относительно EКА,В.

В первом случае, согласно (1), координаты PКА,В можно вычислить следующим образом:

                          (3)

где PГ – исходные координаты точки P в системе EГ;  – матрица преобразования координат точки P из системы координат EГ в систему EАГ;  – из EАГ в EКА;  – из EКА в EКА,В. Выражение (3) также можно записать в следующем виде: , где матрица , с одной стороны, определяет результирующее преобразование координат PГ из системы EГ в систему EКА, а с другой – задает положение и ориентацию модели Земли в системе координат EКА. Вычислив , из нее можно найти вектор переноса и углы Эйлера–Крылова, устанавливающие модель Земли в системе координат EКА, а затем с помощью матрицы  перевести координаты точек модели Земли из системы EКА в систему EКА,В. Рассмотрим эти этапы более подробно.

Подпись:  
Рис. 4. Ориентация КА относительно ЗемлиВычисление матриц преобразования координат точек модели Земли. Согласно выражению (3), чтобы определить координаты любой точки модели Земли в системе координат EКА,В, необходимо вычислить матрицы ,  и .

Найдем вначале матрицу . Для этого рассмотрим, как взаимосвязаны системы координат EГ и EАГ. У этих систем оси OГZГ и OАГZАГ совпадают, а часовой угол s между осями OАГXАГ и OГXГ определяется как гринвичское звездное время: , где s0 – часовой угол (звездное время) в гринвичскую полночь (находится из Астрономического ежегодника); wЗ – угловая скорость вращения Земли;  – время наступления гринвичской полночи по Москве; t – текущее время по Москве. Согласно (1) координаты PАГ любой точки P модели Земли в системе EАГ находятся как

, то есть .           (4)

Матрицу  нетрудно найти, приведя соотношение (2) к виду

, отсюда

           (5)

Наконец, из рисунка 3 легко видеть, что система координат EКА совмещается с системой EКА,В поворотом EКА по часовой стрелке сначала вокруг оси OКАZКА на p радиан, а затем вокруг оси OКАYКА на p/2 радиан. Согласно (1) координаты точки P в этих системах соотносятся следующим образом:

,

то есть .                             (6)

Подставив (4), (5) и (6) в выражение (3), получим:

,

где             (7)

.

Восстановление вектора переноса и углов Эйлера–Крылова. Согласно (7) матрицу MГ-КА можно представить в виде произведения двух матриц:

, , .

Матрица T определяет положение Земли в системе координат EКА, так как она преобразует координаты PГ в координаты PКА, когда система EГ совмещается с системой EКА только путем параллельного переноса. Вектор  является искомым вектором, задающим положение центра Земли в системе EКА.

Матрица R задает ориентацию Земли в системе координат EКА, так как она переводит координаты PГ в координаты PКА, когда система EГ совмещается с системой EКА путем последовательных поворотов вокруг своих осей координат.

Чтобы восстановить из матрицы R углы Эйлера–Крылова, задающие ориентацию Земли в системе EКА, представим последовательность поворотов по этим углам в виде матрицы ориентации Земли R¢ и из равенства R¢=R найдем искомые углы Эйлера–Крылова.

В подсистеме визуализации для ориентации Земли выбирается такая схема поворотов системы EГ на углы Эйлера–Крылова q, y и j, при которой углы j и y сохраняют связь с геоцентрической долготой lГ и широтой yГ положения КА.

Чтобы найти такую схему поворотов, рассмотрим перевод системы координат EГ в систему EКА. Для этого сначала осуществим поворот вокруг оси OГZГ на угол j=-lГ(-p£lГ£p), затем вокруг оси OГYГ, полученной после первого поворота EГ, на угол y=yГ(-p/2£yГ£p/2) и, наконец, вокруг оси OГXГ, полученной после второго поворота EГ, на некоторый угол m (рис. 4). Напомним, что положительным считается поворот по часовой стрелке, если смотреть из конца вектора, вокруг которого осуществляется поворот, чем объясняется знак «–» в выражении j= –lГ. Согласно (1) система EГ переводится в EКА с помощью следующего матричного преобразования:

.

Из данного выражения получаем:

                  (8)

что соответствует ориентации системы EГ (жестко связанной с Землей) относительно системы EКА (жестко связанной с КА). Считаем, что углы Эйлера–Крылова – это повороты системы координат вокруг базисных векторов по часовой стрелке, если смотреть из конца вектора, вокруг которого выполняется поворот. Поэтому из (8) получаем следующую схему поворотов по углам Эйлера–Кры­лова:

·     поворот на угол q=–m вокруг оси OКАXКА;

·     поворот на угол y=–yГ вокруг оси OКАYКА, полученной после первого поворота EКА;

·     поворот на угол j=lГ вокруг оси OКАZКА, полученной после второго поворота EКА.

Согласно (1) из соотношения (8) выводится преобразование координат точки P из системы EКА в систему EГ: , откуда легко найти, что

.

Здесь необходимо отметить, что в случае, когда y=p/2, матрица R¢ принимает следующий вид:

.

Как видно, R¢ зависит лишь от разности углов j и q, а не от их конкретных значений, то есть теряется одна степень свободы. Аналогичная ситуация возникает при y=–p/2. Таким образом, при y=±p/2 по матрице невозможно однозначно определить остальные углы Эйлера–Крылова. Будем считать, что рассматриваемая орбита не является полярной (i¹p/2), то есть y¹±p/2 и cosy¹0.

Приравняв R¢ к R, получим следующую систему уравнений:

Отсюда следует:

Знак «+» перед квадратным корнем объясняется тем, что –p/2

 

Начало.

1.   Вычислить угол y:

; ;

, так как .

2.   Вычислить угол j:

 ;

;

Если , то j = –j.

3.   Вычислить угол q:

; ;

;

Если , то q = –q.

Конец.

Программируя данный алгоритм, при проверке неравенств необходимо также учесть машинную погрешность представления действительных чисел.

Литература

1.   Михайлюк М.В., Торгашев М.А. Система «GLView» визуализации для комплексов виртуального окружения // MEDIAS-2009: тр. Междунар. науч. конф. (10–15 мая 2009 г., Лимассол. Кипр). М.–Протвино: ИФТИ, 2009.

2.   Дубошин Г.Н. Справочное руководство по небесной механике и астродинамике. М.: Наука, 1976.

3.   Михайлюк М.В., Тимохин П.Ю. Имитация движения космического аппарата по орбите путем моделирования ориентации земной поверхности: сб. тр. М.: НИИСИ РАН, 2009.

4.   Meeus J. Astronomical algorithms // Willmann-Bell, 1st Edition, Richmond, Virginia, USA, 1991.

5.   Михайлюк М.В. Основы компьютерной графики. М.: МАТИ, 2002.

6.   Ken Shoemake. Animating rotation with quaternion calculus. In ACM SIGGRAPH Course Notes 10: Computer Animation: 3-D Motion, Specification, and Control. Anaheim, California, 1987. July 27–31.



http://swsys.ru/index.php?page=article&id=2607&lang=%E2%8C%A9=en


Perhaps, you might be interested in the following articles of similar topics: