ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2016 г.)
2-летний импакт-фактор РИНЦ: 0,493
2-летний импакт-фактор РИНЦ без самоцитирования: 0,389
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,732
5-летний импакт-фактор РИНЦ: 0,364
5-летний импакт-фактор РИНЦ без самоцитирования: 0,303
Суммарное число цитирований журнала в РИНЦ: 5022
Пятилетний индекс Херфиндаля по цитирующим журналам: 355
Индекс Херфиндаля по организациям авторов: 499
Десятилетний индекс Хирша: 11
Место в общем рейтинге SCIENCE INDEX за 2016 год: 304
Место в рейтинге SCIENCE INDEX за 2016 год по тематике "Автоматика. Вычислительная техника": 11

Больше данных по публикационной активности нашего журнале за 2008-2016 гг. на сайте РИНЦ

Вход


Забыли пароль? / Регистрация

Добавить в закладки

Следующий номер на сайте

4
Ожидается:
16 Декабря 2017

Оценка сложности информационных систем с учетом человеческого фактора

Статья опубликована в выпуске журнала № 4 за 2007 год.[ 21.12.2007 ]
Аннотация:
Abstract:
Авторы: Фомин В.В. (v_v_fomin@mail.ru) - Российский государственный педагогический университет им. А.И. Герцена, Санкт-Петербург, Россия, доктор технических наук
Количество просмотров: 8538
Версия для печати
Выпуск в формате PDF (2.00Мб)

Размер шрифта:       Шрифт:

Если провести классификацию топологических мер сложности качества программных информационных систем (Холстед, Чепен, Майерс, Джилба и др.) по группам сложности проектирования и функционирования, можно отметить, что:

·                                                                        часть мер сложности функционирования косвенно или напрямую зависит от мер сложности проектных спецификаций;

·                                                                        подавляющее множество топологических мер сложности носят эмпирический, относительный характер и принадлежат к средствам оценки качества «внутреннего проектирования»;

·                                                                        понятие сложности носит сугубо замкнутый структурно-организационный характер, каждая метрика направлена на оценку только определенного вида спецификации структур, хотя и выделена часть метрик, направленных и унифицированных на информационную оценку сложности.

Обратимся к методам оценки качества интерфейса управления информационных систем на основе технологии GOMS – «правила для целей, объектов, методов и выделения» (the model of goals, objects, methods and selection rules). В эту технологию интегрированы законы манипуляции элементами интерфейса (управление) – законы Фитса и Хика. Важной прерогативой этой технологии является то, что она позволяет раскрыть и формально зафиксировать важнейшие аспекты взаимодействия человека с машиной.

Главной составляющей процесса разработки информационных систем является учет человеческого фактора как сложной системы формирования (восприятия, преобразования, хранения) знаний о программно-технических системах, основанной на манипуляции символьными конструкциями.

Используем меру информации (для равновероятных событий) для оценки и расчета качества представления информации по управлению (интерфейс, алгоритм, спецификация) с позиции человеческого фактора «сложности восприятия»: H=loga(n), где n – количество элементов (символов) языка управления; a – критерий оценки параллельности восприятия человеком информации (показатель, уточняющий метрики сложности, ориентированные на оценку информационной энтропии).

Проведенные статистические исследования множества разноязычных текстов (русский, английский, немецкий, французский) позволяют оценить характеристики человека как канала связи (восприятия) с присущими ему пропускными показателями. Была разработана программа (язык С++) с алгоритмом, подсчитывающим количество букв в словах и количество слов в предложении. Результатом исследований явилось среднестатистическое значение показателя a=8 – количество параллельного восприятия человеком отдельных символов. Экспериментальный результат подтверждает вывод теории информодинамики о дискретности восприятия человеком с «мерой восприятия» a=23=8. Сделанные выводы позволяют говорить о возможности применения «ментальных» мер сложности для оценки разноаспектных информационных структур.

Ментальные меры сложности. Процесс объективирования будем рассматривать с позиции двух составляющих.

1. Процесс обучения (education), осознания. В человеческом мозгу формируется множество A ментальных символов на основе новых визуальных образов и (или) нового семантического наполнения уже существующих, в зависимости от внешних условий (ограничений) и состава определяющих поведенческих задач. Формируется синтаксическое пространство B языка активного восприятия, воздействия, управления. В этом случае количество сравнительных операций внутри множества A равняется: ke=log2|A|, где ke – коэффициент обучения; |A| – мощность множества А.

Основанием логарифма выступает 2, так как необходимо классифицировать (сравнить попарно) каждый элемент множества А друг с другом.

2. Процесс манипуляции (manipulation), действия, восприятия. Манипулируя ментальными образами B, человек формирует команды (на основе синтаксиса выработанного языка) и осуществляет целенаправленное воздействие на систему или анализ системы (управление). Процесс действия или восприятия характеризуем коэффициентом манипуляции km: km=log8|A|.

Основываясь на двух введенных коэффициентах, введем понятие информационной меры ментальности: коэффициент сложности управления (сontrol) Kc – количество ментальных операций, необходимых человеку для работы с системой управления, чтобы задействовать максимум операций за минимум времени:

Kc=ke+km=log2|A|+log8|A|=log2|A|+1/3×log2|A|==4/3×log2|A|.

Если мы хотим рассчитать производительность интерфейса по образу «закона Хика», то можно воспользоваться формулой:

Время(мс)=с×log2|A|+d×log8|A|,                       (1)

где с и d – физические характеристики человека: с – время, затрачиваемое на ментальное сравнение одного символа; d – время, затрачиваемое на ментальное сравнение восьми символов.

По существу, можно предположить, что величины c и d совпадают (t=c=d), так как являются показателями одной и той же производительности мозга («количество времени, затрачиваемое мозгом на обработку информации за один «такт») и тогда формула (1) примет вид:

Время (мс) = t×4/3×log2|A|.                                      (2)

На основании введенных характеристик мы можем проводить оценку сложности программного обеспечения. Для этого необходимо рассматривать программу как управляющую систему. Тогда можно говорить о метрике ментальной структурной сложности «алгоритмических» программ Ms:

Ms=Log2(N1+P) + Log8(N2),                                (3)

где N1 – количество переменных; N2 – количество операций всего; P – количество подпрограмм.

Аналогично можно осуществить расчет объектно-ориентированных и потоковых программ, манипулируя понятием обучение и управление.


Постоянный адрес статьи:
http://swsys.ru/index.php?page=article&id=293
Версия для печати
Выпуск в формате PDF (2.00Мб)
Статья опубликована в выпуске журнала № 4 за 2007 год.

Назад, к списку статей

Хотите оценить статью или опубликовать комментарий к ней - зарегистрируйтесь