На правах рекламы:
ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2021 г.)
2-летний импакт-фактор РИНЦ: 0,441
2-летний импакт-фактор РИНЦ без самоцитирования: 0,408
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,704
5-летний импакт-фактор РИНЦ: 0,417
5-летний импакт-фактор РИНЦ без самоцитирования: 0,382
Суммарное число цитирований журнала в РИНЦ: 9837
Пятилетний индекс Херфиндаля по цитирующим журналам: 149
Индекс Херфиндаля по организациям авторов: 384
Десятилетний индекс Хирша: 71
Место в общем рейтинге SCIENCE INDEX за 2021 год: 151
Место в рейтинге SCIENCE INDEX за 2021 год по тематике "Автоматика. Вычислительная техника": 6

Больше данных по публикационной активности нашего журнале за 2008-2021 гг. на сайте РИНЦ

Добавить в закладки

Следующий номер на сайте

4
Ожидается:
25 Сентября 2022

Статьи из выпуска № 1 за 2021 год.

Упорядочить результаты по:
Дате публикации | Заголовку статьи | Авторам

21. Система непрерывного мониторинга и управления качеством производства стеклодротов [№1 за 2021 год]
Авторы: Матвеев Ю.Н., Аль-окаби М.М., Стукалова Н.А.
Просмотров: 1774
В работе описаны архитектура, методы и средства, используемые при создании системы непрерывного мониторинга и управления качеством производства стеклодротов на основе оптических технологий и методов технического зрения. Методы технического зрения и оптические технологии часто применяются для проверки качества стеклянных изделий, однако процесс производства стеклодротов имеет свои особенности, которые исключают использование стандартных решений. Проведенный анализ технологического процесса позволил выявить специфические особенности производства, которые необходимо учитывать при использовании оптических технологий и методов технического зрения в системе непрерывного мониторинга и управления качеством производства стеклодротов. К специфике технологического процесса относятся сильная вибрация оборудования и заготовки в процессе ее движения, высокая температура заготовки, не позволяющая располагать оптические средства регистрации вблизи от наблюдаемого объекта, необходимость выявлять очень мелкие дефекты, размер которых колеблется от десятых долей до нескольких миллиметров, с большого расстояния, высокая скорость движения заготовки и необходимость осматривать заготовку, имеющую круглую форму, со всех сторон в процессе движения. Это далеко не полный перечень проблем, которые были решены в процессе разработки системы непрерывного мониторинга и управления качеством производства стеклодротов на основе оптических технологий и методов технического зрения. В статье рассмотрены методы и процедуры поиска дефектов и определения их локализации. Описан процесс автоматического определения зоны контроля, который позволяет удерживать объект в поле зрения камеры, несмотря на его вибрацию. Для решения задачи кругового осмотра движущейся горячей заготовки была разработана многокамерная система, позволяющая рассматривать ее со всех сторон без вращения. Описаны компоненты автоматизированной системы мониторинга и контроля качества стеклодротов, включающие подсистемы сбора и регистрации видео-данных, предварительной обработки видеоданных, глубокой обработки видеоданных, управляющую подсистему, графический интерфейс пользователя, а также их взаимосвязи. Приведены результаты предварительных испытаний системы.

22. Распараллеливание в задачах анализа физических данных эксперимента LHCb [№1 за 2021 год]
Авторы: Егорычев A.В., Беляев И.М., Овсянникова Т.А.
Просмотров: 2035
Общий прогресс в эксплуатационных характеристиках оборудования с 1990-х годов резко расширил возможности сборки информационных систем из готовых компонентов и сделал доступными свободно распространяемые программные инструменты конструирования систем программирования, в том числе поддерживающие организацию параллельных процессов если не на уровне языка, то на уровне библиотечных компонент. В работе представлены результаты применения метода распараллеливания в задачах физического анализа данных эксперимента LHCb, реализованных с помощью программного пакета OSTAP, на базе широко используемого в физике элементарных частиц пакета ROOT. Объемы данных, получаемые в реальном времени в экспериментах Большого адронного коллайдера, требуют высокой производительности вычислений и скорости принятия решений триггерной системой эксперимента. Высокая производительность ПО также является ключевым требованием для анализа данных, поступающих в систему хранения информации, полученных на последующих этапах работы эксперимента. Адаптация ПО к существующим многоядерным и многопроцессорным системам позволяет достичь необходимой вычислительной мощности для эффективного решения задач обработки данных. Программный пакет OSTAP имеет удобный и доступный для пользователя интерфейс, реализованный на языке Python. Язык Python также зарекомендовал себя как удобное средство разработки распределенных систем и сетевого программирования. Параллельный алгоритм может быть реализован по частям на множестве различных устройств с последующим объединением полученных результатов и получением целевого результата. Мультипарадигматические языки, такие как Python, показывают хорошие результаты в программировании сетевых процессов для многопроцессорных комплексов и привлекают большое число сторонников.

23. Способ обнаружения шумовых сигналов источниковрадиоизлучения на основе фрактального анализа [№1 за 2021 год]
Авторы: Мухамедов Р.Р., Уткин В.В., Войнов Д.С.
Просмотров: 2016
Существующие энергетические обнаружители способны уловить сигнал при отношении сигнал/ шум не менее 20 дБ. Для энергетических обнаружителей утверждение о наличии сигнала делается по его мощности. LPI (Low-Probability-of-Intercept) – режим, подразумевающий использование сигналов с низким уровнем мощности. Уменьшение излучаемой пиковой мощности приводит к снижению дальности ведения радиотехнического наблюдения. Для станций радиотехнического наблюдения необходима дальность обнаружения свыше 174 км, что не могут обеспечить энергетические обнаружители для радиолокационных станций, использующих данные виды сигналов. Следовательно, необходимо разработать обнаружитель, основанный не на мощности сигнала, а на иных физических принципах. Для решения данной задачи авторы рассматривают возможность применения фрактального анализа спектрограмм сигнала. В статье представлены результаты фрактального анализа спектрограмм сигнала, позволяющего обнаруживать широкополосные сигналы с низким уровнем мощности. Рассматриваемый вариант обнаружителя широкополосных сигналов на основе фрактального анализа спектрограмм позволяет обнаруживать сигналы при отношении сигнал/шум менее –5 дБ. Результаты были получены на основе моделирования широкополосных сигналов в среде PyCharm на языке программирования Python 3.8 с низким уровнем мощности и расчета фрактальных размерностей спектрограмм данных видов сигналов. По критерию согласия Пирсона доказано, что фрактальная размерность подчиняется нормальному закону распределения, следовательно, имеется возможность использования критерия обнаружения Неймана–Пирсона. На его основе рассчитаны вероятности правильного обнаружения данных видов сигналов, позволяющие сделать вывод, что при отношении сигнал/шум менее –5 дБ обеспечивается вероятность правильного обнаружения более 95 %. Решение о наличии сигнала делается на основе расчета фрактальной раз-мерности спектрограммы принятого сигнала. Практическая значимость данной работы заключается в том, что фрактальный анализ обнаруженных сигналов позволяет выявить сигнал на большем расстоянии, чем при использовании энергетического способа обнаружения.

24. Программный комплекс для обнаружения и классификации природных объектов на основе топологического анализа [№1 за 2021 год]
Авторы: Еремеев С.В., Абакумов А.В.
Просмотров: 1554
От алгоритма поиска природных объектов на геоснимках требуется определенный баланс. Ввиду природного характера не существует двух полностью одинаковых объектов, поэтому данная задача требует от алгоритма некоторой устойчивости. Для подобных целей могут быть применены методы топологического анализа данных. Они позволяют получить уникальную характеристику изображения – баркод, который может использоваться в качестве обучения большинством современных классификаторов. На основе методов топологического анализа разработан программный комплекс, позволяю-щий выполнять поиск необходимого природного объекта на растровом снимке для его дальней-шей классификации и обработки. Структура программного комплекса включает несколько подси-стем: выделения областей интереса на снимке, построения баркодов, поиска схожих объектов, а также вывода и экспорта найденных объектов. В статье подробно описан принцип выделения объектов интереса на снимках, построения баркодов и их сравнения. Для каждого выделенного на геоснимке пространственного объекта вычисляются топологические характеристики в виде чисел Бетти, которые являются основой для по-строения баркода. Показан процесс разложения изображения на последовательность бинарных изображений для выявления устойчивых топологических характеристик. Продемонстрирован принцип сравнения баркодов для определения схожести выделенных областей интереса с эталонными объектами. Приведены примеры использования программного комплекса для задачи поиска айсбергов на растровом изображении. Показаны результаты найденных объектов с разной степенью схожести относительно эталонов в зависимости от заданных параметров. Программный комплекс может быть использован для широкого спектра задач при анализе природных объектов на геоснимках, включая обработку данных за разное время и на разных масштабах.

25. Система геовизуализации показателей территорий для поддержки решений в ситуационных центрах социально-экономического анализа [№1 за 2021 год]
Авторы: Медведев А.В., Рапп Е.Ю., Шушарин И.А.
Просмотров: 1281
Одной из ключевых составляющих поддержки принятия управленческих решений в сфере анализа, планирования и прогнозирования территориального социально-экономического развития является предоставление экспертам в режиме оперативного взаимодействия возможности геовизуализации территориальных характеристик социально-экономических объектов. В статье описана разработанная авторами в виде desktop-приложения геовизуальная система отображения социально-экономической информации, позволяющая осуществлять эффективную поддержку принятия решений при анализе социально-экономического развития территорий. Охарактеризованы аналитические возможности указанной системы, представлены ее интерфейс и меню. Приведены скриншоты работы геовизуальной системы при ее использовании в рамках действующего информационно-аналитического центра учреждения высшего образования, иллюстрирующие некоторые из описанных возможностей. Аналитическая обработка координат и характеристик объектов в предложенной геовизуальной системе, в частности, заключается в их автоматизированном ранжировании, кластеризации, представлении объектов в различных цветовых диапазонах, в построении столбчатых диаграмм и графиков во времени в зависимости от значений актуальных социально-экономических характеристик объектов, хранимых в удобном для пользователя формате. Информация об объектах и их характеристиках автоматически считывается из Excel-файла, каждый лист которого соответствует моменту времени ее фиксации (наблюдения, записи) в выбранных пользователем временных единицах. Формой хранения информации в системе является куб с осями «список объектов», «список социально-экономических характеристик объектов», «моменты фиксации данных», что позволяет использовать возможности OLAP-анализа при сортировке, ранжировании, фильтрации имеющейся информации об объектах. Перечисленные возможности геовизуальной системы могут эффективно использоваться в условиях оперативной поддержки принятия решений в ситуационных центрах и ситуационных комнатах при социально-экономическом анализе функционирования предприятий и территорий.

← Предыдущая | 1 | 2 | 3