На правах рекламы:
ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Авторитетность издания

ВАК - К1
RSCI, ядро РИНЦ

Добавить в закладки

Следующий номер на сайте

2
Ожидается:
16 Июня 2024

Статьи из выпуска № 1 за 2021 год.

Упорядочить результаты по:
Дате публикации | Заголовку статьи | Авторам

21. Распараллеливание в задачах анализа физических данных эксперимента LHCb [№1 за 2021 год]
Авторы: Егорычев A.В., Беляев И.М., Овсянникова Т.А.
Просмотров: 2851
Общий прогресс в эксплуатационных характеристиках оборудования с 1990-х годов резко расширил возможности сборки информационных систем из готовых компонентов и сделал доступными свободно распространяемые программные инструменты конструирования систем программирования, в том числе поддерживающие организацию параллельных процессов если не на уровне языка, то на уровне библиотечных компонент. В работе представлены результаты применения метода распараллеливания в задачах физического анализа данных эксперимента LHCb, реализованных с помощью программного пакета OSTAP, на базе широко используемого в физике элементарных частиц пакета ROOT. Объемы данных, получаемые в реальном времени в экспериментах Большого адронного коллайдера, требуют высокой производительности вычислений и скорости принятия решений триггерной системой эксперимента. Высокая производительность ПО также является ключевым требованием для анализа данных, поступающих в систему хранения информации, полученных на последующих этапах работы эксперимента. Адаптация ПО к существующим многоядерным и многопроцессорным системам позволяет достичь необходимой вычислительной мощности для эффективного решения задач обработки данных. Программный пакет OSTAP имеет удобный и доступный для пользователя интерфейс, реализованный на языке Python. Язык Python также зарекомендовал себя как удобное средство разработки распределенных систем и сетевого программирования. Параллельный алгоритм может быть реализован по частям на множестве различных устройств с последующим объединением полученных результатов и получением целевого результата. Мультипарадигматические языки, такие как Python, показывают хорошие результаты в программировании сетевых процессов для многопроцессорных комплексов и привлекают большое число сторонников.

22. Семантический анализ научных текстов: опыт создания корпуса и построения языковых моделей [№1 за 2021 год]
Авторы: Бручес Е.П., Паульс А.Е., Батура Т.В., Исаченко В.В., Щербатов Д.Р.
Просмотров: 2860
Данная статья посвящена исследованию методов автоматического обнаружения сущностей (NER) и классификации семантических отношений (RC) в научных текстах из области информационных технологий. Научные публикации содержат ценную информацию о передовых научных достижениях, однако эффективная обработка непрерывно увеличивающихся объемов данных яв-ляется трудоемкой задачей. Требуется постоянное совершенствование автоматических методов обработки такой информации. Современные методы, как правило, довольно хорошо решают обозначенные задачи с помощью глубокого машинного обучения, но, чтобы добиться хорошего качества на данных из конкретных областей знаний, необходимо дообучать полученные модели на специально подготовленных корпусах. Подобные коллекции научных текстов существуют для английского языка и активно используются научным сообществом, однако в настоящее время на русском языке такие корпусы в открытом доступе не представлены. Статья содержит описание созданного корпуса текстов на русском языке. Корпус RuSERRC состоит из 1 600 неразмеченных документов и 80 размеченных сущностями и семантическими отношениями (рассмотрены 6 типов). В работе также предложены несколько модификаций методов для построения моделей, работающих с русским языком. Это особенно актуально, так как большая часть существующих исследований ориентирована на работу с данными на английском и китайском языках и найти в свобод-ном доступе качественные модели для русского языка не всегда возможно. В статью включены результаты экспериментов по сравнению словарного метода, RAKE и методов на основе нейронных сетей. Модели и корпус являются общедоступными, могут быть полезными для проведения исследований и при создании систем извлечения информации.

23. Система геовизуализации показателей территорий для поддержки решений в ситуационных центрах социально-экономического анализа [№1 за 2021 год]
Авторы: Медведев А.В., Рапп Е.Ю., Шушарин И.А.
Просмотров: 1724
Одной из ключевых составляющих поддержки принятия управленческих решений в сфере анализа, планирования и прогнозирования территориального социально-экономического развития является предоставление экспертам в режиме оперативного взаимодействия возможности геовизуализации территориальных характеристик социально-экономических объектов. В статье описана разработанная авторами в виде desktop-приложения геовизуальная система отображения социально-экономической информации, позволяющая осуществлять эффективную поддержку принятия решений при анализе социально-экономического развития территорий. Охарактеризованы аналитические возможности указанной системы, представлены ее интерфейс и меню. Приведены скриншоты работы геовизуальной системы при ее использовании в рамках действующего информационно-аналитического центра учреждения высшего образования, иллюстрирующие некоторые из описанных возможностей. Аналитическая обработка координат и характеристик объектов в предложенной геовизуальной системе, в частности, заключается в их автоматизированном ранжировании, кластеризации, представлении объектов в различных цветовых диапазонах, в построении столбчатых диаграмм и графиков во времени в зависимости от значений актуальных социально-экономических характеристик объектов, хранимых в удобном для пользователя формате. Информация об объектах и их характеристиках автоматически считывается из Excel-файла, каждый лист которого соответствует моменту времени ее фиксации (наблюдения, записи) в выбранных пользователем временных единицах. Формой хранения информации в системе является куб с осями «список объектов», «список социально-экономических характеристик объектов», «моменты фиксации данных», что позволяет использовать возможности OLAP-анализа при сортировке, ранжировании, фильтрации имеющейся информации об объектах. Перечисленные возможности геовизуальной системы могут эффективно использоваться в условиях оперативной поддержки принятия решений в ситуационных центрах и ситуационных комнатах при социально-экономическом анализе функционирования предприятий и территорий.

24. Система непрерывного мониторинга и управления качеством производства стеклодротов [№1 за 2021 год]
Авторы: Матвеев Ю.Н., Аль-окаби М.М., Стукалова Н.А.
Просмотров: 2693
В работе описаны архитектура, методы и средства, используемые при создании системы непрерывного мониторинга и управления качеством производства стеклодротов на основе оптических технологий и методов технического зрения. Методы технического зрения и оптические технологии часто применяются для проверки качества стеклянных изделий, однако процесс производства стеклодротов имеет свои особенности, которые исключают использование стандартных решений. Проведенный анализ технологического процесса позволил выявить специфические особенности производства, которые необходимо учитывать при использовании оптических технологий и методов технического зрения в системе непрерывного мониторинга и управления качеством производства стеклодротов. К специфике технологического процесса относятся сильная вибрация оборудования и заготовки в процессе ее движения, высокая температура заготовки, не позволяющая располагать оптические средства регистрации вблизи от наблюдаемого объекта, необходимость выявлять очень мелкие дефекты, размер которых колеблется от десятых долей до нескольких миллиметров, с большого расстояния, высокая скорость движения заготовки и необходимость осматривать заготовку, имеющую круглую форму, со всех сторон в процессе движения. Это далеко не полный перечень проблем, которые были решены в процессе разработки системы непрерывного мониторинга и управления качеством производства стеклодротов на основе оптических технологий и методов технического зрения. В статье рассмотрены методы и процедуры поиска дефектов и определения их локализации. Описан процесс автоматического определения зоны контроля, который позволяет удерживать объект в поле зрения камеры, несмотря на его вибрацию. Для решения задачи кругового осмотра движущейся горячей заготовки была разработана многокамерная система, позволяющая рассматривать ее со всех сторон без вращения. Описаны компоненты автоматизированной системы мониторинга и контроля качества стеклодротов, включающие подсистемы сбора и регистрации видео-данных, предварительной обработки видеоданных, глубокой обработки видеоданных, управляющую подсистему, графический интерфейс пользователя, а также их взаимосвязи. Приведены результаты предварительных испытаний системы.

25. Способ обнаружения шумовых сигналов источниковрадиоизлучения на основе фрактального анализа [№1 за 2021 год]
Авторы: Мухамедов Р.Р., Уткин В.В., Войнов Д.С.
Просмотров: 3580
Существующие энергетические обнаружители способны уловить сигнал при отношении сигнал/ шум не менее 20 дБ. Для энергетических обнаружителей утверждение о наличии сигнала делается по его мощности. LPI (Low-Probability-of-Intercept) – режим, подразумевающий использование сигналов с низким уровнем мощности. Уменьшение излучаемой пиковой мощности приводит к снижению дальности ведения радиотехнического наблюдения. Для станций радиотехнического наблюдения необходима дальность обнаружения свыше 174 км, что не могут обеспечить энергетические обнаружители для радиолокационных станций, использующих данные виды сигналов. Следовательно, необходимо разработать обнаружитель, основанный не на мощности сигнала, а на иных физических принципах. Для решения данной задачи авторы рассматривают возможность применения фрактального анализа спектрограмм сигнала. В статье представлены результаты фрактального анализа спектрограмм сигнала, позволяющего обнаруживать широкополосные сигналы с низким уровнем мощности. Рассматриваемый вариант обнаружителя широкополосных сигналов на основе фрактального анализа спектрограмм позволяет обнаруживать сигналы при отношении сигнал/шум менее –5 дБ. Результаты были получены на основе моделирования широкополосных сигналов в среде PyCharm на языке программирования Python 3.8 с низким уровнем мощности и расчета фрактальных размерностей спектрограмм данных видов сигналов. По критерию согласия Пирсона доказано, что фрактальная размерность подчиняется нормальному закону распределения, следовательно, имеется возможность использования критерия обнаружения Неймана–Пирсона. На его основе рассчитаны вероятности правильного обнаружения данных видов сигналов, позволяющие сделать вывод, что при отношении сигнал/шум менее –5 дБ обеспечивается вероятность правильного обнаружения более 95 %. Решение о наличии сигнала делается на основе расчета фрактальной раз-мерности спектрограммы принятого сигнала. Практическая значимость данной работы заключается в том, что фрактальный анализ обнаруженных сигналов позволяет выявить сигнал на большем расстоянии, чем при использовании энергетического способа обнаружения.

← Предыдущая | 1 | 2 | 3