ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Journal influence

Higher Attestation Commission (VAK) - К1 quartile
Russian Science Citation Index (RSCI)

Bookmark

Next issue

2
Publication date:
16 June 2024

Articles of journal № 3 at 2022 year.

Order result by:
Public date | Title | Authors |

1. A rehabilitation simulator for patients with hand mobility problems using virtual reality technologies [№3 за 2022 год]
Authors: Aglyamov F.R. , Kugurakov V.S.
Visitors: 2615
A hand is one of the most important parts of the human body; its injuries seriously affect even normal activities. Thus, restoring the hand function and mobility is one of the most complex and important top-ics for normal daily life. The subject of this study is a hardware-software simulator complex to reha-bilitate patients with hand mobility disorders using virtual reality technology. The topic is relevant due to a higher level of patient’s interest and motivation, which can potentially increase the interest and ef-fectiveness of rehabilitation procedures. The authors have analyzed modern motion modeling methods, as well as the use of a virtual reality technology for rehabilitation and tracking changes in motor functions of patients with cognitive prob-lems. The result of the study is a prototype glove and software for collecting information about the finger flexion degree, as well as a set of exercises for a patient and rehabilitation progress recordings for fur-ther analysis. The paper presents a possible architecture option for integrating the reading glove with modern VR systems. Practical relevance relates to the introduction of an experimental method for rehabilitation, the ef-fectiveness of which has been proven theoretically and will probably be effective in practice, which is planned to be proven later. Section 6 outlines further plans for the glove development, as well as the addition of functionality to the rehabilitation application.

2. Using partial parallelization to triangulate 2D domains [№3 за 2022 год]
Authors: Bikbulatov T.Kh., Tumakov D.N.
Visitors: 2116
Delaunay triangulation of an arbitrary domain is one of the fundamental problems of computational geometry. Classical approaches to Delaunay triangulation produce triangles that have a wide range of angle values. The paper proposes an algorithm for triangulation of complex geometry domains taking into ac-count predetermined parameters: the minimum angle and the maximum side length of the obtained tri-angles. The algorithm consists of three main stages. The first stage takes a set of points that set the fig-ure boundary as input, and forms an initial partition into subdomains from them generating points for further triangulation. Such generation for subdomains is completely independent; therefore, it is most effectively parallelized by the number of logical cores. The figure is then triangulated by the divide-and-conquer algorithm. Here, the highest performance is achieved with the number of threads equal to the number of physical processor cores. At the last stage, the parameters of triangles are refined by a method based on Ruppert’s algorithm. Due to the specifics of the algorithm, the serial code is optimal at this stage. All parallelization is implemented using OpenMP technology in C++. The paper shows numerical results representing the increase in computing performance for a different number of threads depend-ing on the problem dimension.

3. Developing a system for managing student’s professional development based on his digital footprint [№3 за 2022 год]
Authors: Boganyuk Yu.V., Vorobeva M.S., Zakharova I.G.
Visitors: 1442
Most existing information systems in universities lack the possibility to analyze a student's work in de-tail. Such analysis should include student's report texts, implemented projects and a program code that make up student digital footprint. The authors have developed an intelligent system that solves these problems. The system is represented by a set of modules for monitoring, managing and predicting the professional development of a student as an IT specialist using Big Data and Data mining technologies. The development takes into account the features of the current process: for example, several infor-mation systems and file storages in the university, various roles of internal and external users, users’ needs and problems that they face in the process of work and learning. One of the key elements of the system is a multi-level data storage, which consists of two components: a relational database and a NoSQL storage. The system is focused not only on the academic performance analysis, but also on text documents produced both by the students themselves and documents regulating their educational tra-jectory. The developed system allows expanding the ability to make decisions in the educational process management at every level (student, teacher, university administration) through applying modern data mining methods and technologies to the less studied part of the student's digital footprint. In addition, the developed system gives new opportunities for interaction between a university and employers and applicants. The system was tested using the data of students of the Institute of Mathematics and Com-puter Science of the Tyumen State University.

4. An automated system for key terms analysis [№3 за 2022 год]
Authors: S.A. Vlasova, N.E. Kalenov
Visitors: 1958
The paper describes the method proposed by the authors for forming an array of key terms that form the basis of subject ontology of the Common Digital Space of Scientific Knowledge and encyclopedias list of articles (slots) in a certain scientific direction. The method is based on a frequency analysis of the occurrence of key terms in the articles pub-lished in leading scientific journals on this topic. The technique involves program processing of metadata of articles reflected in various databases, constructing rating lists of the frequency of occur-rence of individual key terms and selecting the cores of such lists, which, in turn, can be considered as the basis for filling a subject ontology and forming encyclopedic slots. To implement the methodology, the authors developed the corresponding database structure, soft-ware tools for filling it, processing and analyzing data. The paper presents the database description and the results of the practical implementation of the methodology based on processing several thousand articles from leading Russian journals in mathematics, informatics and physics (terms in Russian and English were identified and analyzed). An assessment of the correspondence of key terms distribution frequencies and their constituent individual words to the Bradford law has shown significant discrepancies with this law in the case of key terms, but there was certain convergence when considering individual words and their permutation within key terms.

5. Solving the problem of electromagnetic wave diffraction on arbitrary shape screens using CUDA [№3 за 2022 год]
Authors: Giniyatova D.Kh., Markina A.G.
Visitors: 1894
The paper considers the algorithm for solving the problem of electromagnetic (EM) wave diffraction on flat arbitrary shape screens using the CUDA parallel programming technology. The problem is formulated as an integro-differential equation and solved by the method of moments (Galerkin method). The authors have chosen RWG functions as basis and testing functions. They have developed a simple and fast algorithm for triangulating a domain with an arbitrary boundary to con-struct the corresponding RWG elements on GPU. Numerical results were presented for the diffraction problem on canonical and complex shape screens. The obtained solution is in good agreement with the results of the previous studies. The paper also presents a comparative analysis of the execution time of serial and parallel algo-rithms. It is shown that the use of CUDA technology significantly speeds up the solving of the problem of EM wave diffraction on flat metal arbitrary shape screens.

6. A software package for simulating a silicon hydrochlorination reactor [№3 за 2022 год]
Authors: Glushkov I.V. , Chistyakova T.B. , Averina Yu.M.
Visitors: 1897
The modern development of industrial enterprises is impossible without introducing information tech-nologies (IT) into the process of their functioning. The IT introduction allows increasing the competi-tiveness of industrial enterprises. In a market economy, process management involves a range of dif-ferent risks. These risks can be modeled using software packages. In the article, the subject of research is the technology of developing a software complex for the reactor for the hydrochlorination of ground sili-con operating in dynamic mode. In this work, for the first time at the software level, the main features of the operation of the trichlorosilane synthesis reactor are proposed and shown. Described is material and heat balance of reactor, hydrodynamics of "suspended" layer is shown and visualized. Hydrody-namic and thermal calculations of the synthesis reactor were carried out. These calculations are inter-preted into a mathematical graph. A mathematical apparatus for describing the operating parameters of the reactor is shown and for the first time a computer mathematical model of the process of synthesis of trichlorosilane of active production has been developed. The technological processes of the study object were visualized. Sys-tem of monitoring, control and regulation of reactor operating parameters to ensure safety of produc-tion is proposed. Monitoring and control devices are connected to mathematical model. With the help of the resulting software model, various experiments can be carried out in "real time". The study has established the importance of maintaining the operating conditions of such reactors, re-lated to the possibility of local overheating zones that may affect the occurrence of emergencies. The work is of interest to specialists serving the production of trichlorosilane and is aimed at reduc-ing the technological risks arising during the operation of the reactor.

7. A method for testing radar stations using an unmanned aerial vehicle and airborne equipment [№3 за 2022 год]
Authors: Kalabin, A.L., A.K. Morozov
Visitors: 1803
The paper proposes the modernization of the laboratory test method using an unmanned aerial vehicle, which houses a programmable generator with an on-board computer and other necessary auxiliary equipment. Radar testing is performed as in the flyby method but without using real targets. The es-sence of the method is to control the carrier’s movement and the signal from the onboard generator output in such a way that the emitted signal corresponds to the actual radar operating conditions. The on-board computer calculates the test signal digital representation; a radio signal corresponding to the current operating mode of the station is emitted using a generator and an antenna. It is possible to con-trol the angular coordinates, range and number of targets for the tested radar by changing the coordi-nates and structure of the emitted signal. The proposed method can be used to test various characteristics of radars. The paper presents the results of modeling from determining the locator software model characteristics. The carrier’s software model is also used for modeling. Modeling consists in the fact that when the model time changes, the coordinates of the carrier and the simulated targets change; the locator software model performs the de-tection procedure according to the specified characteristics. At the end of the simulation, the coordi-nates of the carrier and the simulated targets are compared with the detected target coordinates. Based on the comparison results, it is possible to determine the functional characteristics of the locator. The proposed method can be useful in preparing for full-scale tests, as well as for evaluating char-acteristics that are difficult to evaluate by traditional methods, for example, when evaluating the range resolution, which involves the use of two aircrafts, the distance between which should decrease, which potentially increases the risk of collision.

8. True and fictitious eigenvalues of the set of Muller boundary integral equations [№3 за 2022 год]
Authors: Ketov I.V. , Oktyabrskaya A.O., Spiridonov A.O., Karchevskii E.M.
Visitors: 1674
The authors have investigated the spectrum of a nonlinear eigenvalue problem for a system of bounda-ry integral equations theoretically and numerically. In general, eigenvalues of this problem split into two sets. The first set is the set of the true eigenvalues corresponding to the original eigenvalue prob-lem of the Helmholtz operator. The second set is the set of fictitious eigenvalues that correspond to the so-called "turned inside-out" problem. Therefore, it is important to determine the conditions under which the original eigenvalue problem for the Helmholtz operator on a plane and the corresponding problem for the integral operator are spectrally equivalent. The original eigenvalue problem for the Helmholtz operator is reduced to a nonlinear eigenvalue problem for the system of Muller boundary integral equations. The solutions of the original problem and the "turned inside-out" problem are found by the method of separation of variables. The solution of the system of Muller boundary integral equations is based on the Galerkin method. The paper formulates and proves the equivalence theorem for the original eigenvalue problem for the Helmholtz operator and the system of Muller boundary integral equations. It shows that the spec-trum of the nonlinear eigenvalue problem of the system of Muller boundary integral equations contains fictitious eigenvalues in addition to the true eigenvalues. There is a defined area on the complex plane that consists only of fictitious eigenvalues; and it is shown that these fictitious eigenvalues are explicit-ly separated from true eigenvalues. The equivalence theorem provides a theoretical justification for the applicability of the Muller boundary integral equation method. The developed computer programs can be directly used in the modeling microdisk lasers.

9. Developing an information system in the field of composite materials using modern tools [№3 за 2022 год]
Authors: Kirillov N.D., Koltsova E.M.
Visitors: 1487
The article considers the approach to developing an information system in the field of composite mate-rials using the modern development framework Laravel in the PHP programming language. This study includes the subject area analysis and data storage model development based on this analysis, the de-velopment of the main program modules of the system and the implementation of the logic of interac-tion between these modules. The originality of the study is in the implementation of the information system as a web-based service for quick and easy access to information based on the Laravel develop-ment framework. This paper identifies and compiles a list of the main entities that describe the field of composite ma-terials. Then, the paper presents a description a method of compiling and developing a relational data storage model for these entities. During model developing, among other things, the authors used meth-ods for the most optimal storage of hierarchical data structures. Based on this data storage model, the authors developed modules and blocks of information system modules and connected these modules into a single end service. This service is web-based and can very conveniently provide users and re-searchers of composite materials with access to all the information they need. The work notes and de-scribes the tools and modules of the Laravel framework, which were used in the development of the en-tire system. As a demonstration of the study results, the authors give examples of the information system opera-tion - the authorization pages of a web-based service and some pages of the main entities of the system are given as an example of service visualization.

10. Structuring natural text entities using neural networks for generating 3D-scenes [№3 за 2022 год]
Authors: Kozar B.A. , Kugurakova V.V., Sakhibgareeva G.F.
Visitors: 2686
The subject of this study is the automation using neural networks of the process of assembling three-dimensional scene, which can be used both to generate three-dimensional scenes or locations in com-puter games from a textual description, and to prepare sequences of three-dimensional synthetic data. This topic is relevant for developing three-dimensional graphics including interactive projects – games, simula-tors, AR/VR applications. After analyzing and comparing the results obtained in a number of well-known completed projects, the authors determine technologies and software libraries, which allow effectively achieving the de-sired goal - to provide fast assembly of three-dimensional scenes filled with objects according to the text description. Thanks to synthesis of the best solutions, it was possible to create an optimal concept that allows achieving quick and qualitative result with the right rules of building geometrical relations between scene objects. There is a formed list of requirements to the designed tool and its architecture. Input data for using this tool is a text in natural language; output data is a scene with objects corre-sponding to the description used. The main result achieved is a finished software tool for Unreal Engine developed on the basis of the nlp-ue4 neural network and the set of tensorflow, nltk, pandas, gensim, h5py libraries. The readiness of the tool is evaluated as a prototype solution, which can be integrated into the drafting stage of interac-tive projects with three-dimensional graphics. To evaluate the created tool effectiveness objectively, the authors have conducted the experiments that proved that its use even in the current version significantly reduces development time and does not require a user to have skills in programming or creating three-dimensional graphics. There is also a discussion about the research development prospects.

| 1 | 2 | 3 | Next →