ISSN 0236-235X (P)
ISSN 2311-2735 (E)


Next issue

Publication date:
16 December 2021

Articles of journal № 3 at 2019 year.

Order result by:
Public date | Title | Authors

1. Magnetic resonance imaging data processing methods for cognitive visualization and tracking of zones of interest [№3 за 2019 год]
Authors: V.P. Fralenko, M.V. Shustova , M.V. Khachumov
Visitors: 3312
The main goal of this research is the development of methods for intelligent automatic analysis of mag-netic resonance imaging (MRI) data to support physicians engaged into the study of areas of ischemic lesion and the movement characteristics of mesenchymal stem cells transplanted in the brain of labora-tory animals. The relevance of this research is determined by existence of a number of unsolved prob-lems in the field of study of MRI data automatic analysis. They are: a lack of tools for automated high-precision search of target objects and areas of interests in MRI data (in the interactive mode); problems of fast analysis of a large amount of dynamically changing parameters of the objects under study; a lack of significant improvement of researchers’ equipment through creating a new instrumental base and methods of processing MRI data. The paper presents methods and algorithms to solve the problem of automating the processes of MRI data intellectual processing. The developed methods allow automatic detection and visualization of areas of interest in the brain: ischemic lesions and transplanted stem cells. 2D and 3D visualizations make it possible to model the process of the genesis and changing of zones of interest in time. The methods and algorithms are based on processing DICOM files obtained by scanning a recipient's brain (laboratory rats) in T2 mode (to detect ischemic lesion zone) and SWI mode (to detect mesenchymal stem cells clusters). The developed algorithms form the basis of a software package for processing and analyzing bio-medical data for expert decision-making support for researchers. This software package allows auto-matic detecting of areas of interest in MRI data. The introduction of tracking functions into the devel-oped software package allowed in-depth study of the migration and homing processes of stem cells during a transplantation into a brain affected by various diseases.

2. Development of a database and a converter for retrieval and analysis of specialized data from a medical device [№3 за 2019 год]
Authors: A.P. Eremeev , S.A. Ivliev
Visitors: 3405
When developing expert systems, there may be difficulties associated with storage or data exchange formats. There may be situations when the data is stored in a proprietary format, or exchange files for such systems have proprietary format. This makes automated data analyze difficult, since they have to be manually entered into an expert system. However, there are methods that allow converting data into an easy-to-use format. The paper considers the analysis of database binary files of a medical apparatus for studying com-plex vision impairment in order to extract biophysical studies data for further analysis. Since the standard software does not allow information exchange with external systems in open formats, it is necessary to develop additional methods and software to determine data physical structure for subse-quent conversion to an open format. The initial data for the analysis is information about what data are stored in a medical device data-base, as well as general principles of physical data representation in computer systems. Converter de-veloping follows determining the structure of data files. Converter output files can be used in further neural network training. This approach allows quick creating of a database of samples (precedents) eliminating the need for manual data transfer. The proposed approach can further serve as a basis for data analysis in other similar situations.

3. Reconstruction of urban space texture model based on topographic maps and camera records [№3 за 2019 год]
Authors: A.P. Kudryashov, I.V. Solovev
Visitors: 2501
The tasks of reconstructing urban space scenes can use various materials as a data source: satellite im-ages, video series, optical system data, etc. The paper proposes an approach for reconstructing a three-dimensional model of urban space using the method of recognizing service information on a topographic map. Topographic maps are the basic data at all stages of architectural, planning and engineering design. They contain information on the building footing geometry and their position among other objects. For recognition, the authors use a modified wave algorithm, which allows identifying and recognizing closed contours in an image that are classified into various objects: building contours, labels, service symbols, etc. The paper presents rationale of advantages of the considered algorithm to select contours. The paper proposes a method of applying textures to three-dimensional models of buildings. The textures are from photographs of real buildings. It is proposed to use special textures for certain types of buildings in a case when there is no real photograph of the building. Photos are attached to a topo-graphic map using geographic coordinates. The authors also describe a method of binding reconstructed objects to a relief. There is an infor-mation system used both for the entire reconstruction process and to solve individual local tasks. The paper gives the examples of reconstructing real topographic maps of 1:2000 scale.

4. On the approach of modeling linear objects as sources of emergency situations of technogenic nature [№3 за 2019 год]
Authors: A.V. Rybakov , E.V. Ivanov , I.A. Vidrashku , T.B. Khatukhov
Visitors: 2596
Recently the problem of effective and rapid response to emergency situations, as well as the optimal calculation of the necessary manpower and resources for emergency response has become particularly acute due to the insufficiently effective level of disaster response planning. This paper provides a possible solution for the problem of forecasting emergency zones and the dy-namics of their changes over time. This solution is introduced as an interactive emergency modeling system using terrain maps. The paper presents a new approach to the creation of client-server application of an interactive de-cision support system for preventing and eliminating emergencies. The paper demonstrates the mechanism for processing a linear object and modeling an emergency situation related to the violation of its integrity using a gas pipeline. It also provides a list of the source data necessary for the calculation of areas at risk. The result of the calculation is a set of data that is a base for assessing the forces and means necessary to eliminate emergency consequences. There is a brief description of the implementation of a system of modeling various emergency situa-tions, which allows visualizing the affected area, on a cartographic basis. The paper presents an algo-rithm of system operation divided into stages of the client side, and server side stages in the order of their execution. It also describes the interactive system structure with a description of the tools and an example of the options for their application.

5. A performance evaluation methodology for energy efficient control system alternatives for MIMO systems [№3 за 2019 год]
Authors: D.Yu. Muromtsev, A.N. Gribkov, V.N. Shamkin, I.V. Tyurin
Visitors: 2966
The paper presents the methodology for selecting the most optimal alternative of an energy-efficient control system for a complex process system. The proposed methodology is may help to solve structur-al synthesis problems. Designing a control system is a set of interrelated operations aimed at achieving a specific outcome. The implementation of such project might involve uncertainties and risks, high costs, many stages and considerable time consumption, the need to have a well-coordinated team of executors, as well as no guarantee that there wiil be the expected outcome. The choice of a project management methodology and a strategy depends on the type of the process system and the project implementation objectives, the nature of uncertainties and risks, the possibility of using information technology and parallel design. Both project risks and design costs depend on the number of alternatives considered during design stages. Therefore, for project management it is necessary to use design process models that take into account the number of alternatives and their effectiveness at each stage of design work. In general, a design process can be described by a functional model in IDEF0 format supplemented by decision-making nodes. The method of evaluating the effectiveness of alternatives is based on the method of dynamic varia-tion, which assumes that each design stage has a formed group of various alternatives that begin to be developed in parallel. After each stage, there is an expert evaluation session with the following deci-sion on the significance of different alternatives in a group. As an example, the paper describes using the dynamic variation method for developing a control system for a six-section precision furnace for heat treatment of thermistor workpieces in the air. From a control point of view, it is a typical MIMO system with complex relations between inlets and zones.

6. Dual porosity model for fractured porous reservoirs development analysis based on the superelement concept [№3 за 2019 год]
Authors: I.V. Afanaskin , S.G. Volpin, A.V. Roditelev , A.A. Kolevatov
Visitors: 3556
The main oil field development strategy in Russia is waterflooding (water injection into an oil reservoir for oil displacement and pressure maintenance). Nowadays, most Russian oil fields are at the 3rd and 4th development stages, which means high water cut of produced liquid (90% and more). Main objec-tive of reservoir engineers is water production reduction (if possible) and oil production increase. These conditions require significant control and oil reservoir development regulation. To implement such activities, specialists need a solution for fast simulation of significant reservoirs and for fast evaluation of multiple development scenarios for testing hypothesis for geological struc-ture, history matching and production optimization. This approach is relevant for fractured porous res-ervoirs that have significant heterogeneity of filtration-conductivity properties. This fact causes early watercut growth in producing wells and leads to limitation of field production project targets. The paper proposes a methodology of numerical simulation of fractured porous oil reservoirs de-velopment based on the superelement conception. The model simulates two-phase filtration in a dual-porosity reservoir. A numerical scheme is fully explicit. The set of conservation equations is approxi-mated on a super-elements grid. This fact increases calculation speed and simplifies model generation (as cell dimension is consistent with well spacing). Calculation accuracy check requires production history matching. The proposed calculation methodology is tested on a real field example and checked by simulation in Rubis Kappa Engineering. Good matching results have been achieved at model training stages and forecast simulation.

7. Information support for decision-making in the case of an emergency at gas pipeline facilities based on production rules [№3 за 2019 год]
Authors: O.I. Khristodulo, A.S. Samoylov
Visitors: 2439
Specialized organizations provide gas to industrial enterprises using a set of complexes of hierarchical-ly and geographically distributed objects that are interconnected at the regional level, but at the same time they are part of the gas providing system at the federal level. The process of providing gas to industrial enterprises is associated with the processing of infor-mation about objects with a special feature consisting in the important role of a spatial component. The paper analyzes the problem of gas providing to industrial enterprises and considers the features of information and spatial objects used in the process of gas provision. It also demonstrates the need in using the geographic information system to keep up to date, process, analyze, monitor the integrity and consistency of information about spatial objects of a gas distribution organization. There is a description of the spatial information on gas supply facilities of industrial enterprises (gas distribution stations, high and medium pressure gas pipelines, stop valves, gas reduction points, places of possible accidents, etc.) and the main characteristics of these objects. Moreover, the paper presents production rules based on the formal knowledge of experts and describing the actions of a dispatcher in the case of an emergency on a gas pipeline. There is a scheme of using a knowledge base based on production rules for information decision support in the case of an emergency. Information support for making decisions on the localization of an emergency at gas supply facilities of industrial enterprises is based on using spatial information about objects directly from a distributed spatial database. Data analysis using formalized expert knowledge allows simulating an emergency, calculating the amount of gas in the pipeline and generating necessary reports.

8. The automation of scientific studies on the concept of gas well survivability during water flooding [№3 за 2019 год]
Authors: N.A. Solovyov, A.F. Valeev
Visitors: 2258
Development of gas condensate fields during falling production is characterized by various adverse ef-fects that are not regulated by the design conditions of normal operation. One of the main adverse ef-fects is the well flooding, which worsens the permeability of a bottom-hole zone leading to a sharp de-crease in performance. At the same time, the amount of residual drained gas reserves may be sufficient to maintain industrial production levels. The authors propose to use the survivability property to study a production system under these conditions. The concept of survivability is known in technology, how-ever there is still no a developed theory that would contain (as a theory of reliability) general technical results that allow investigating this property, evaluating it quantitatively and developing practical rec-ommendations to ensure complex system survivability. The paper presents the concept of scientific studies on gas production system survivability. It is based on the system of predictive modeling of gas condensate field production technological process-es, which takes into account new technologies of reservoir fluid extraction and their implementation period. The concept of gas production system survivability is introduced and the signs of this property are defined. The existing application software for hydrodynamic modeling does not allow investigating the sur-vivability of a gas production system. Therefore, the task of developing information and software for research on the survivability of the gas production system under the conditions of gas well waterflood-ing becomes urgent. The paper proposes a conceptual model of scientific studies automation of the wa-tering gas well survivability. It is the development of an integrated geological and technological model of a gas condensate field. There is software implementation of the predictive model of product recov-ery from a flooded well based on the technology of field fluid extraction using a centrifugal pump.

9. Development of operation algorithms of a mathematical model of an airship anti-stealth radar [№3 за 2019 год]
Author: S.V. Susha
Visitors: 4181
The paper describes a complex mathematical model of an airship anti-stealth radar system. The pur-pose of the study was to justify the technical appearance, application features, to assess the effective-ness of the operation and combat (information) capabilities of the complex. The development result in-cludes a number of simulation models (a target environment model, an Earth model, an on-board sys-tems model including a radar station model, an on-board control system model and a navigation system functioning model, a ground control center model including a model for displaying information about detected and tracked targets, a model board control), as well as functionally complete blocks (systems for processing and analyzing results). When modeling, all simulation models in the complex mathematical model are constructed accord-ing to a single principle. The functioning dynamics of the simulated complex is simulated by succes-sive changing of their states at some time intervals. The paper provides a block diagram of a general algorithm of a complex mathematical model in a simulation mode. The modeling process assumes stepwise changing of the model time by a step size. There are algorithms for the main units and their relationship as part of a general algorithm for the op-eration of a complex mathematical model of an airship radar system in a simulation mode. The operation algorithms of the target environment model include both the aerospace target and ra-dio-electronic environments. The spatial position and orientation of targets with respect to a stationary point of the airship radar system and the radiation of all on-board electronic target means is determined by targets parameters, as well as the direction of their arrival and radiation intensity. The operation algorithms of the navigation system model include source data of a carrier position – its location error vectors. The data values of these vectors are determined by the navigation system characteristics. A radar station model is based on calculating the detection parameter using the radar equation and calculating a signal propagation process. This model includes algorithms for primary and secondary processing of radar information. The implementation of the presented algorithms in a complex mathematical model allows reasona-ble describing of operation processes of an airship radar system when detecting, tracking, and recog-nizing subtle air targets. It will provide an assessment of the effectiveness of the options for building the complex and its information capabilities.

10. Analysis of color spaces effect on the results of color image processing by equalization algorithms [№3 за 2019 год]
Author: M.I. Bald
Visitors: 2412
Color images do not often have a necessary level of visual quality. The histogram equalization method is one of the common ways to improve the contrast of a color image. Usually, color image processing with contrast irregularity is made in the YCbCr color space. However, this color space is not universal to improve any type of distortion. The use of inappropriate color space might significantly reduce the quality of color reproduction. The paper presents a comparative analysis of color space influence on a processing result of histo-gram equalization algorithms. There is a description of an image structure. The authors consider vari-ous color spaces such as RGB, YCbCr, HSV and Lab; their advantages, disadvantages and application areas. There also is a detailed description of the process of direct and inverse transformation of color schemes. The paper proposes a classification of distorted images with contrast irregularity based on their histograms. In order to equalize the contrast, six different histogram equalization algorithms process an image brightness component. For color reproduction analysis, image processing is performed in each of the colored spaces. Examination of original and processed images in different color spaces has shown the color representation dependence on distortion types and color schemes. Estimation of the results of distorted image processing using quantitative metrics proved to be ineffective due to the high share of noise in an image and the absence of an original undistorted image. Therefore, a visual evaluation of a person is used to assess image quality. The paper also describes the research peculiarities. Based on obtained the results, to improve color reproduction, a corresponding color scheme is se-lected for each type of distorted color image. The HSV color space is best for processing high-contrast images, the Lab color space is for low-contrast images, the YCbCr system is for bright images, and the HSV space is for dark images.

| 1 | 2 | 3 | Next →