ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2017 г.)
2-летний импакт-фактор РИНЦ: 0,500
2-летний импакт-фактор РИНЦ без самоцитирования: 0,405
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,817
5-летний импакт-фактор РИНЦ: 0,319
5-летний импакт-фактор РИНЦ без самоцитирования: 0,264
Суммарное число цитирований журнала в РИНЦ: 6012
Пятилетний индекс Херфиндаля по цитирующим журналам: 404
Индекс Херфиндаля по организациям авторов: 338
Десятилетний индекс Хирша: 17
Место в общем рейтинге SCIENCE INDEX за 2017 год: 527
Место в рейтинге SCIENCE INDEX за 2017 год по тематике "Автоматика. Вычислительная техника": 16

Больше данных по публикационной активности нашего журнале за 2008-2017 гг. на сайте РИНЦ

Добавить в закладки

Следующий номер на сайте

3
Ожидается:
16 Сентября 2019

В Сибирском государственном аэрокосмическом университете им. академика М.Ф. Решетнева совместно с Ульмским университетом исследована проблема обработки голосовых сигналов в процессе человеко-машинной коммуникации.

11.02.2015

Качество распознавания устной речи интеллектуальными диалоговыми системами (ИДС) стремительно повышается, однако использование ИДС в повседневной жизни затруднено в связи с предъявляемыми к ним требованиями. Диалоговая система должна не просто отвечать на вопросы шаблонными фразами, но и вести беседу на естественном языке, подстраиваясь под пользователя.

Сфера применения ИДС обширна: автоматизированные службы поддержки, системы диагностирования и проверки знаний, индустрия развлечений и т.д. При этом ориентация на конечного пользователя является ключевым моментом в процессе взаимодействия системы и человека: пол, возраст, эмоциональные особенности личности определяют формат ответа, синтезируемый ИДС.

Распознавание пользователя ИДС, его эмоционального состояния, других персональных черт и т.п. осуществляется на основе акустических характеристик голосового сигнала. При этом количество извлекаемых из звукозаписи параметров достигает нескольких сотен, что затрудняет работу привлекаемых алгоритмов (ввиду взаимной корреляции признаков, их зашумленности).

Поэтому важной задачей в процессе идентификации пользователя и его персональных характеристик (в том числе эмоций) является извлечение информативной системы признаков, используемых в дальнейшем алгоритмами распознавания.

Подробное описание дается в статье «Система автоматического извлечения информативных признаков для распознавания эмоций человека в речевой коммуникации», авторы: Брестер K.Ю., Семенкин Е.С. (Сибирский государственный аэрокосмический университет им. академика М.Ф. Решетнева, г. Красноярск), Сидоров М.Ю. (Ульмский университет, Ульм, Германия).