ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2016 г.)
2-летний импакт-фактор РИНЦ: 0,493
2-летний импакт-фактор РИНЦ без самоцитирования: 0,389
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,732
5-летний импакт-фактор РИНЦ: 0,364
5-летний импакт-фактор РИНЦ без самоцитирования: 0,303
Суммарное число цитирований журнала в РИНЦ: 5022
Пятилетний индекс Херфиндаля по цитирующим журналам: 355
Индекс Херфиндаля по организациям авторов: 499
Десятилетний индекс Хирша: 11
Место в общем рейтинге SCIENCE INDEX за 2016 год: 304
Место в рейтинге SCIENCE INDEX за 2016 год по тематике "Автоматика. Вычислительная техника": 11

Больше данных по публикационной активности нашего журнале за 2008-2016 гг. на сайте РИНЦ

Вход


Забыли пароль? / Регистрация

Добавить в закладки

Следующий номер на сайте

4
Ожидается:
16 Декабря 2017

В Академии строительства и архитектуры Донского государственного технического университета спроектирован и разработан прототип системы хранения ансамблей нейросетевых моделей.

05.04.2017

В последнее время среди специалистов по анализу данных и машинному обучению все более популярным становится ПО для организации исследований. Прежде всего это связано с большим количеством этапов обработки данных и спецификой их выполнения. Можно выделить такую библиотеку, как Sacred, которая позволяет организовать эксперименты без привязки к конкретным моделям, данные параметров моделей и результаты можно сохранить в БД. В библиотеке Hyperopt акцент делается на оптимизации параметров моделей. FGLab позволяет аналитику запускать свои модели на распределенной системе с возможностью сохранять результаты экспериментов и их параметры в БД. Для сложных вычислительных задач с применением Hadoop, которые могут длиться дни или недели, подойдет Luigi. Данный пакет позволяет организовать управление многочисленными вычислительными задачами в одном месте. Последние две системы имеют интерфейс для визуализации результатов и информации по задачам.

Заключительным этапом в решении задачи машинного обучения является построение ансамбля моделей, поскольку в некоторых случаях оптимальное решение может быть получено с применением ансамбля нескольких различных моделей. Большое количество источников показывают практическую значимость применения ансамбля в решении прикладных задач. Очень часто в таких ансамблях используют нейросетевые модели. Примечательно, что построение ансамбля только из нейросетевых моделей в некоторых задачах дает преимущество. В связи с этим возникает проблема хранения данных на этапах моделирования, в том числе данных самих моделей и построенных с их помощью ансамблей. Проведенный обзор систем организации экспериментов показал, что существующие системы не решают такую проблему в явном виде.

Подробное описание дается в статье «Разработка системы хранения ансамблей нейросетевых моделей», авторы: Пучков Е.В., Терехов С. (Академия строительства и архитектуры Донского государственного технического университета, Ростов-на-Дону).