ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2017 г.)
2-летний импакт-фактор РИНЦ: 0,500
2-летний импакт-фактор РИНЦ без самоцитирования: 0,405
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,817
5-летний импакт-фактор РИНЦ: 0,319
5-летний импакт-фактор РИНЦ без самоцитирования: 0,264
Суммарное число цитирований журнала в РИНЦ: 6012
Пятилетний индекс Херфиндаля по цитирующим журналам: 404
Индекс Херфиндаля по организациям авторов: 338
Десятилетний индекс Хирша: 17
Место в общем рейтинге SCIENCE INDEX за 2017 год: 527
Место в рейтинге SCIENCE INDEX за 2017 год по тематике "Автоматика. Вычислительная техника": 16

Больше данных по публикационной активности нашего журнале за 2008-2017 гг. на сайте РИНЦ

Вход


Забыли пароль? / Регистрация

Добавить в закладки

Следующий номер на сайте

4
Ожидается:
16 Декабря 2018

В Национальном исследовательском университете «Московский энергетический институт» совместно с Белорусским государственным университетом информатики и радиоэлектроники (БГУИР) исследовались актуальные вопросы повышения эффективности работы систем, использующих рассуждения на основе прецедентов (CBR – Case-Based Reasoning).

14.02.2018

Прецедентный подход базируется на понятии прецедента, определяемого как случай, имевший место ранее и служащий примером или оправданием для последующих случаев подобного рода, и довольно простом принципе, что подобные задачи имеют подобное решение.

В общем случае модель представления прецедента включает описание ситуации, решение для данной ситуации и результат применения решения: CASE = (Situation, Solution, Result), где Situation – ситуация, описывающая данный прецедент; Solution – решение (например диагноз и рекомендации); Result – результат применения решения, который может включать список выполненных действий, дополнительные комментарии и ссылки на другие прецеденты, а также в некоторых случаях обоснование выбора данного решения и возможные альтернативы. В большинстве случаев для представления прецедентов используется простое параметрическое представление.

Как правило, CBR-методы основываются на так называемом CBR-цикле, включающем в себя четыре основных этапа:

- извлечение наиболее соответствующего (подобного) прецедента (или прецедентов) для сложившейся ситуации из базы прецедентов (БП);

- повторное использование извлеченного прецедента для попытки решения текущей проблемы;

- адаптация и применение полученного решения для решения текущей проблемы;

- сохранение вновь принятого решения как части нового прецедента.

Для извлечения прецедентов из БП системы могут применяться различные методы:

- метод ближайшего соседа (NN – Nearest Neighbor) и его модификации (например метод k ближайших соседей (k-NN));

- метод поиска на деревьях решений;

- метод извлечения на основе знаний;

- метод извлечения с учетом применимости прецедентов и др.

Подробное описание дается в статье «Применение методов классификации и кластеризации для повышения эффективности работы прецедентных систем», авторы: П.Р. Варшавский, Ар Кар Мьо (Национальный исследовательский университет «Московский энергетический институт», Москва), Д.В. Шункевич (Белорусский государственный университет информатики и радиоэлектроники (БГУИР), г. Минск).