ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2017 г.)
2-летний импакт-фактор РИНЦ: 0,500
2-летний импакт-фактор РИНЦ без самоцитирования: 0,405
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,817
5-летний импакт-фактор РИНЦ: 0,319
5-летний импакт-фактор РИНЦ без самоцитирования: 0,264
Суммарное число цитирований журнала в РИНЦ: 6012
Пятилетний индекс Херфиндаля по цитирующим журналам: 404
Индекс Херфиндаля по организациям авторов: 338
Десятилетний индекс Хирша: 17
Место в общем рейтинге SCIENCE INDEX за 2017 год: 527
Место в рейтинге SCIENCE INDEX за 2017 год по тематике "Автоматика. Вычислительная техника": 16

Больше данных по публикационной активности нашего журнале за 2008-2017 гг. на сайте РИНЦ

Вход


Забыли пароль? / Регистрация

Добавить в закладки

Следующий номер на сайте

1
Ожидается:
16 Декабря 2018

В Военно-космической академии им. А.Ф. Можайского разработан программный комплекс моделирования системы радиолокационного распознавания для оценки влияния различных факторов на эффективность ее работы, являющийся статистической математической моделью системы.

28.03.2018

Построение эффективных радиолокационных систем распознавания (РЛСР) невозможно без использования методов математического моделирования. Сутью математического моделирования РЛСР являются описания физических процессов формирования локационных сигналов, приема отраженных сигналов и их обработка для определения координатных и некоординатных признаков наблюдаемых объектов, а также процессов распознавания на основе получаемой модельной апостериорной информации на языке математики: формул, аналитических соотношений, уравнений и алгоритмов. Результатом подобных описаний является построение комплекса математических моделей, представляющего собой инструмент для организации исследований, основанных на проведении целенаправленных математических экспериментов.

Математическая модель позволяет оценить эффективность РЛСР еще на ступени ее разработки и проектирования. Для математического моделирования необходимо построить специальную статистическую модель, на которой реализуется многократное повторение процесса распознавания объектов каждого класса. Модель должна позволять оценивать значения критерия эффективности в зависимости от состава алфавита классов при данном словаре признаков и, наоборот, при данном алфавите классов – в зависимости от объема апостериорной информации, то есть конкретного словаря признаков. Модель должна обеспечивать возможность оценки влияния на значение критерия эффективности системы того или иного сокращения рабочего словаря признаков по сравнению с априорным, погрешностей измерения признаков, ошибок априорного описания классов на языке признаков предполагаемого рабочего словаря.

Подробное описание дается в статье «Программный комплекс моделирования системы радиолокационного распознавания», авторы: Калинин Т.В., Барцевич А.В., Петров С.А., Хрестинин Д.В. (Военно-космическая академия им. А.Ф. Можайского, Санкт-Петербург).