ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2017 г.)
2-летний импакт-фактор РИНЦ: 0,500
2-летний импакт-фактор РИНЦ без самоцитирования: 0,405
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,817
5-летний импакт-фактор РИНЦ: 0,319
5-летний импакт-фактор РИНЦ без самоцитирования: 0,264
Суммарное число цитирований журнала в РИНЦ: 6012
Пятилетний индекс Херфиндаля по цитирующим журналам: 404
Индекс Херфиндаля по организациям авторов: 338
Десятилетний индекс Хирша: 17
Место в общем рейтинге SCIENCE INDEX за 2017 год: 527
Место в рейтинге SCIENCE INDEX за 2017 год по тематике "Автоматика. Вычислительная техника": 16

Больше данных по публикационной активности нашего журнале за 2008-2017 гг. на сайте РИНЦ

Вход


Забыли пароль? / Регистрация

Добавить в закладки

Следующий номер на сайте

4
Ожидается:
16 Декабря 2018

В Южно-Уральском государственном университете (национальном исследовательском университете) разработаны и предложены методический инструментарий анализа публикационной активности с применением интеллектуального анализа наукометрических данных, а также модульная архитектура и прототип программной системы.

15.08.2018

В мировой практике функционирования института науки в качестве основы оценки научной мысли и продуктивности научной деятельности используются два подхода – экспертный (качественный) и наукометрический (количественный). В последние годы в качестве инструмента оценки эффективности деятельности российских ученых, исследовательских организаций, отечественной науки в целом стали активно использоваться данные об уровне и числе публикаций, числе и качестве цитирований, представленных разнообразными наукометрическими показателями. Публикационные и цитатные наукометрические показатели рассматриваются как целевые индикаторы состояния науки в «Стратегии инновационного развития Российской Федерации на период до 2020 года» и в Указе Президента РФ от 7 мая 2012 года.

В области наукометрии и инфометрии в целом наработан обширный базис математических методов для исследования динамики научных исследований и публикационной активности. В международной практике известны аналитические методы и показатели, наиболее полно отвечающие задаче индивидуальной наукометрической оценки автора и т.п. Совершенствуется аналитический инструментарий (InCites, SciVal etc.) в программных системах международных реферативно-библиогра- фических БД Scopus, Web of Science и других.

Вместе с тем недостаточное внимание как в теории, так и в практике уделено поддержке принятия управленческих решений в сфере менеджмента научной деятельности: недостаточно изучены вопросы формирования и управления публикационным потенциалом отдельных исследователей и исследовательских коллективов; не проработаны вопросы работы с большими наукометрическими данными с применением методов интеллектуального анализа; отсутствуют программные разработки в области поддержки принятия решения и в разработке индивидуальных рекомендаций по улучшению публикационной активности, наукометрической результативности и реализации исследовательского и публикационного потенциалов.

На современном этапе развития информационных технологий важную роль приобретают интеллектуальные рекомендательные системы. Рекомендательные системы – это программы, которые пытаются предсказать, какие объекты (фильмы, музыка, книги, публикации, веб-сайты) будут интересны пользователю, имея определенную информацию об их профиле. Разумеется, и наукометрический профиль исследователя или исследовательской организации в целом в той или иной наукометрической БД вполне отвечает необходимым условиям разработки рекомендаций.

Подробное описание дается в статье «Рекомендательная система на основе интеллектуального анализа наукометрического профиля исследователя», автор Валько Д.В. (Южно-Уральский государственный университет (национальный исследовательский университет), Челябинск).