ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2019 г.)
2-летний импакт-фактор РИНЦ: 1,051
2-летний импакт-фактор РИНЦ без самоцитирования: 0,466
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 1,051
5-летний импакт-фактор РИНЦ: 0,466
5-летний импакт-фактор РИНЦ без самоцитирования: 0,395
Суммарное число цитирований журнала в РИНЦ: 9403
Пятилетний индекс Херфиндаля по цитирующим журналам: 295
Индекс Херфиндаля по организациям авторов: 369
Десятилетний индекс Хирша: 20
Место в общем рейтинге SCIENCE INDEX за 2019 год: 291
Место в рейтинге SCIENCE INDEX за 2019 год по тематике "Автоматика. Вычислительная техника": 7

Больше данных по публикационной активности нашего журнале за 2008-2018 гг. на сайте РИНЦ

Добавить в закладки

Следующий номер на сайте

3
Ожидается:
16 Сентября 2021

В Национальном исследовательском университете «МЭИ» реализованы программные средства для классификации данных, использующих рассуждения на основе прецедентов (Case-Based Reasoning, CBR) и технологию сверточных нейронных сетей (Convolutional Neural Network, CNN).

13.01.2021

Одной из основных задач интеллектуального анализа данных (ИАД) является задача их классификации. Она позволяет определить, к какому классу относятся те или иные данные при условии, что множество классов, к одному из которых впоследствии можно отнести исследуемый объект, заранее обусловлено.

В классическом варианте среди всего множества исследуемых объектов существуют объекты, для которых известно, к какому классу они относятся. Такие объекты называются обучающими примерами, а подмножество обучающих примеров – обучающей выборкой, и зачастую именно от ее характеристик зависит качество решения задачи классификации.

Среди основных характеристик обучающей выборки необходимо выделить достаточность, разнообразие и равномерность. Достаточность обучающей выборки подразумевает, что число обучающих примеров является достаточным для обучения, разнообразие – что среди обучающих примеров имеется большое число разнообразных комбинаций вход-выход, а равномерность – что обучающие примеры различных классов представлены примерно в одинаковых пропорциях.

Большинство подходов ИАД требуют одновременного наличия этих трех характеристик у обучающей выборки, однако далеко не всегда такая обучающая выборка существует. Подготовка обучающей выборки является сложной задачей, с которой порой не может справиться даже эксперт в этой области. Эксперт может иметь четкое понимание разделения объектов на классы, однако зачастую в условиях пограничных состояний не всегда способен однозначно определить принадлежность объекта к конкретному классу. Для формирования обучающей выборки можно применить прецедентный подход Case-Based Reasoning (CBR), ориентированный на использование и адаптацию накопленного опыта для получения новых правдоподобных суждений.

Подробное описание дается в статье «Реализация программных средств для классификации данных на основе аппарата сверточных нейронных сетей и прецедентного подхода», авторы: Варшавский П.Р., Кожевников А.В. (Национальный исследовательский университет «МЭИ», кафедра прикладной математики и искусственного интеллекта, г. Москва).