На правах рекламы:
ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2021 г.)
2-летний импакт-фактор РИНЦ: 0,441
2-летний импакт-фактор РИНЦ без самоцитирования: 0,408
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,704
5-летний импакт-фактор РИНЦ: 0,417
5-летний импакт-фактор РИНЦ без самоцитирования: 0,382
Суммарное число цитирований журнала в РИНЦ: 9837
Пятилетний индекс Херфиндаля по цитирующим журналам: 149
Индекс Херфиндаля по организациям авторов: 384
Десятилетний индекс Хирша: 71
Место в общем рейтинге SCIENCE INDEX за 2021 год: 196
Место в рейтинге SCIENCE INDEX за 2021 год по тематике "Автоматика. Вычислительная техника": 4
Место в рейтинге SCIENCE INDEX за 2021 год по тематике "Кибернетика" 2

Больше данных по публикационной активности нашего журнале за 2008-2021 гг. на сайте РИНЦ

Добавить в закладки

Следующий номер на сайте

2
Ожидается:
19 Июня 2023

В Институте автоматики и электрометрии СО РАН, лаборатории синтезирующих систем визуализации представлен метод моделирования деформации эластичных объектов с использованием функций возмущения.

15.03.2023

Численное интегрирование по времени жестких систем дифференциальных уравнений является одной из главных задач численного анализа. В задачах эластодинамики неоднородных материалов, которые характеризуются переменными свойствами, проблема усложняется наличием бесконечного дискретного спектра. Это ведет к снижению вычислительной эффективности, особенно если дифференциальные уравнения являются жесткими. Жесткая система обыкновенных дифференциальных уравнений – это система, численное решение которой явными методами неудовлетворительно из-за резкого увеличения числа вычислений или резкого возрастания погрешности при недостаточно малом шаге.

Явные методы требуют меньшего количества вычислений за один временной шаг, но обладают худшими свойствами стабильности в сравнении с неявными методами, которые стабильны и обеспечивают точную интеграцию с гораздо большими временными шагами. Однако увеличение размера временного шага требует большего количества вычислений в каждой временной итерации. Тем не менее, для сложных задач интегрирование уравнений в явном виде требует больших вычислений.

Подробное описание дается в статье «Моделирование деформации эластичных объектов с использованием функций возмущения», авторы Вяткин С.И., Долговесов Б.С. (Институт автоматики и электрометрии СО РАН, лаборатория синтезирующих систем визуализации, г. Новосибирск).