Авторитетность издания
Добавить в закладки
Следующий номер на сайте
В НИИСИ РАН решена задача получения минимально необходимой дополнительной информации в форме значений новых операторов усреднения на заданном графе
24.01.2012Во многих задачах томографии, рентгеноскопии и математического моделирования необходимо получить объемное или плоское изображение объекта по данным об интенсивности излучения, которое усреднено по некоторой системе пространственных областей или сечений. Это классическая задача интегральной геометрии, относящаяся к функциональному анализу и его вычислительным приложениям. В современных исследованиях исходное пространство, на котором восстанавливается распределение интенсивности, часто изначально имеет структуру дискретного графа, а исходная информация относится к весовым усреднениям по подграфам.
В данной работе рассматривается задача получения необходимой дополнительной информации в тех случаях, когда исходная информация недостаточна для ее однозначного решения. При этом предполагается, что дополнительная информация тоже будет получена в форме усреднений функции по подмножествам. Устанавливаются минимальные требования к таким данным.
Классическая проблематика интегральной геометрии связана с обращением операторов, усредняющих функцию, определенную на линейном пространстве с мерой, по заданной системе прямых или к-плоскостей в этом пространстве. В последние годы стала развиваться теория обращения операторов усреднения на пространствах с комбинаторной структурой, содержащих конечное или счетное число точек. Отмечена связь комбинаторных и аналитических методов. При этом возникают новые формулы обращения на непрерывных пространствах с мерой. В данной статье рассматривается конструкция нескольких усреднений для функций, определенных на комбинаторном пространстве.
Подробное описание дается в статье «Векторные системы усреднений на графе», автор Коганов А.В. (НИИСИ РАН, г. Москва).