Авторитетность издания
Добавить в закладки
Следующий номер на сайте
В МСЦ РАН разработан подход к выбору вычислительной системы для решения научных задач
04.02.2013В научных трудах рассматривались вопросы отображения программ на архитектуру вычислительной системы. В данной работе решается обратная задача – отображение архитектуры на прикладные программы. Она возникает тогда, когда встает проблема выбора вычислительной системы для конкретных задач. Рассмотрим формализацию выбора вычислительной системы для решения научно-технических задач.
Среди высокопроизводительных вычислительных систем наибольшее распространение получили кластерные системы. Сегодня типичная высокопроизводительная кластерная система состоит из узлов, объединенных несколькими сетями: коммуникационной, транспортной, управляющей, служебной. Узлы вместе с коммуникационной сетью образуют вычислительное поле. Коммуникационная сеть используется для обмена данными между вычислительными узлами во время расчетов. Транспортные сети используются для передачи данных между вычислительным полем и файловой системой. Управляющая сеть используется для организации процесса вычислений, например, для загрузки параллельных программ. Служебная сеть предназначена для управления аппаратурой. Самые высокие требования по производительности предъявляются к коммуникационной сети, поэтому они обычно имеют высокую пропускную способность и низкую латентность. Примером коммуникационных сетей являются сети, построенные по технологии Infiniband. Остальные сети чаще всего реализуются с помощью технологии Ethernet. Для экономии места или средств в вычислительной системе некоторые сети могут объединяться. Вычислительный узел содержит несколько многоядерных процессоров (обычно два), работающих на общей или псевдообщей памяти. Для увеличения производительности при выполнении сильно параллельных задач в узле могут устанавливаться ускорители (обычно от 1 до 4).
Подробное описание дается в статье «Выбор вычислительной системы для решения научных задач», автор Шабанов Б.М. (Межведомственный суперкомпьютерный центр РАН, г. Москва).