Компьютерное моделирование прочно заняло свое место в фундаментальных и прикладных науках, в частности, в исследовании механики и физики процессов контактирования реальных технических поверхностей, трения и изнашивания, электрических контактов, контактного теплообмена [1]. Наряду с аналитическим и экспериментальным подходами к исследованию моделирование следует расценивать как равноправный метод, имеющий свои преимущества. В настоящее время доминируют численные методы и математические модели, реализуемые с помощью компьютерных технологий.
В данной статье рассмотрена математическая компьютерная модель контакта реальных технических поверхностей, имеющих отклонения от идеальной геометрической формы в виде шероховатости. Модель предназначена для расчета как механических характеристик контакта (деформация, жесткость, площадь фактического контакта и др.), так и электрических (сопротивление контакта и его изменение во времени под воздействием факторов окружающей среды).
Расчет характеристик механического и электрического контактов с помощью математической модели имеет ряд преимуществ по сравнению с аналитическим подходом. Так, расчет деформации каждого выступа позволяет более точно учесть особенности его контактирования, чем аналитический расчет, связанный с усреднением характеристик единичных выступов. Попытки уточнения аналитических моделей за счет отказа от усредненных параметров и введения статистически распределенных характеристик единичных контактов приводят к сложным аналитическим выражениям, содержащим интегралы, которые не выражаются в элементарных функциях и могут быть рассчитаны только численно. Таким образом, теряются преимущества чисто аналитического подхода и появляется необходимость использования численных решений.
Исходные предпосылки модели следующие: материалы контактирующих тел однородны и изотропны; контакт имеет дискретный характер и происходит по вершинам отдельных выступов шероховатости, вступивших в контакт, деформация выступов носит упругий характер и описывается решением Герца для контакта двух криволинейных гладких тел с первоначальным касанием в точке; размеры единичных площадок контакта малы по сравнению с размерами контактирующих тел и радиусами кривизны выступов в точке ка- сания; в зоне контакта действуют только нормальные напряжения, касательные напряжения от- сутствуют; распределение пятен контакта по его поверхности равномерное. Исходными данными для расчета являются характеристики микрогеометрии поверхностей – максимальная высота выступов над средней линией профиля Rp и максимальный радиус закругления выступов rmax; физико-механические характеристики материала – модуль упругости (модуль Юнга) Е, коэффициент Пуассона m, удельное электрическое сопротивление материала r; эксплуатационные характеристики – нормальная нагрузка N, сжимающая контакт.
Приведем основные формулы для расчета характеристик единичного контакта двух сферических выступов шероховатой поверхности.
Механические и электрические характеристики контакта сферических выступов: – радиус единичной площадки контакта; – сближение (деформация) контактирующих выступов; – максимальное давление в контакте двух выступов; – среднее давление в контакте двух выступов; – сопротивление единичного контакта выступов шероховатой поверхности; – электрическое сопротивление контакта. Здесь E* – приведенный модуль Юнга, .
Компьютерная модель практически реализована в виде Windows-приложения, написана на языке C++ с использованием библиотеки классов Borland. Программно модель входит в основной расчетный модуль, который оптимизирован на наивысшую производительность. Кроме основного, есть дополнительный модуль, отвечающий за удобство представления данных и пользовательский интерфейс. Результатом работы являются эксплуатационные характеристики контакта, представленные в виде таблицы. Для большей наглядности на основе предложенных формул предусмотрена возможность строить графики зависимостей характеристик контакта от внешних факторов.
В рамках компьютерной модели расчет характеристик контакта происходит следующим об- разом. Генерируется пара случайных чисел, распределенных по некоторому закону, соответствующих высоте и радиусу выступа шероховатой поверхности.
По приведенным выше формулам на основании исходных данных для заданной величины деформации контакта последовательно рассчитываются нагрузка на единичный выступ Ni, радиус ai и площадь Ari единичного пятна контакта и его электропроводимость 1/Ri. На каждом этапе проверяется физическая реалистичность рассчитанных данных, например, радиус выступа не может быть меньше его высоты и т.п. Результаты расчета суммируются для заданного числа выступов: N=ΣNi, Ar=ΣAri, 1/R=Σ(1/Ri). Логику работы программы иллюстрирует блок-схема (рис. 1).
Программа связана с БД MS Access, состоящей из двух таблиц, каждая из которых включает в себя 33 поля. Первая таблица включает значения исходных и промежуточных расчетных данных, вторая – значения результатов. Таблицы используются для построения графиков. При этом первое поле каждой таблицы зарезервировано для проверенной начальной комбинации исходных параметров и используется только в начале работы и только для чтения. Прежде всего программа считывает начальную комбинацию исходных параметров из БД и заполняет этими значениями поля исходных данных. Затем пользователь редактирует их, выполняет расчет, после чего заполняется таблица значений и по ней строится график.
Адекватность модели проверялась путем сравнения результатов моделирования с данными работ других авторов, полученными на основании аналитических моделей для некоторых частных случаев [2, 3]. Все расчеты выполнялись на примере контакта медных поверхностей с различными характеристиками шероховатости. Исходные данные для моделирования следующие: максимальная высота выступов шероховатости Rp=1¸50 мкм; максимальный радиус выступов шероховатости rmax=10¸200 мкм; равномерно распределены высоты выступов hi в диапазоне [0, Rp] и радиусы выступов в диапазоне [0, rmax], при этом ri³hi.
На рисунке 2 представлены результаты расчетов относительной деформации контакта e=d/Rp от нормальной (сжимающей) нагрузки в сравнении с расчетом по аналитическим зависимостям из работы [2]. Так как аналитические зависимости, в отличие от описываемой модели, получены для контакта поверхностей с одинаковыми радиусами выступов, соответствующие расчеты выполнялись для средних значений радиусов выступов rср=rmax/2.
Сравнение полученных на основании пред- ложенной модели результатов с результатами аналитического расчета показывает, что модель позволяет адекватно описать деформационные характеристики контакта. Некоторое расхождение вызвано тем, что с помощью модели можно более точно учесть параметры микрогеометрии поверхности, а именно, распределение радиусов выступов шероховатости.
На рисунке 3 представлены результаты расчетов электрического сопротивления контакта от нормальной (сжимающей) нагрузки в сравнении с расчетом по аналитическим зависимостям из работы [3]. И в этом случае результаты моделирования согласуются с аналитическим расчетом.
В заключение сделаем следующие выводы. Предложенная математическая модель контакта реальных технических поверхностей и ее компьютерная реализация позволяют адекватно описывать эксплуатационные свойства контактных соединений. Адекватность модели проверена путем сравнения результатов моделирования с расчетом таких эксплуатационных характеристик контакта, как деформация и электрическое сопротивление. Результаты моделирования в целом правильно отражают зависимость указанных характеристик контакта от приложенной сжимающей нагрузки, при этом моделирование позволяет более полно учесть особенности микротопографии поверхности и повысить точность расчетов характеристик контакта.
Литература
1. Демкин Н.Б., Измайлов В.В. Зависимость эксплуатационных свойств фрикционного контакта от микрогеометрии контактирующих поверхностей // Трение и износ. 2010. Т. 31. № 1. C. 68–77.
2. Демкин Н.Б., Рыжов Э.В. Качество поверхности и контакт деталей машин. М.: Машиностроение, 1981. 244 с.
3. Измайлов В.В., Новоселова М.В. Контакт твердых тел и его проводимость. Тверь: Изд-во ТГТУ, 2010. 112 с.