ISSN 0236-235X (P)
ISSN 2311-2735 (E)
3

13 Сентября 2024

Самарская школа профессора С.А. Прохорова по прикладному анализу случайных процессов


Иващенко А.В. (anton-ivashenko@yandex.ru) - Самарский государственный аэрокосмический университет им. академика С.П. Королева (национальный исследовательский университет) (профессор), Самара, Россия, доктор технических наук, Куликовских И.М. (kulikovskikh.i@gmail.com) - Самарский государственный аэрокосмический университет им. С.П. Королева (национальный исследовательский университет) (доцент), Самара, Россия, кандидат технических наук
Ключевые слова: автоматизированная система., ортогональные функции, корреляционно-спектральный анализ, случайные потоки, временные ряды, случайные процессы
Keywords: automated systems, orthogonal functions, correlation-spectral analysis, stochastic flows, time series, stochastic processes


     

Современные методы и алгоритмы прикладного анализа случайных процессов позволяют решать разнообразные актуальные научные и практические задачи в области исследований, связанных с измерением и обработкой сигналов различной природы, анализом и моделированием сложных систем, в частности, в физике, океанологии, медицине, машиностроении и в других областях, где исследователи сталкиваются с необходимостью обработки случайных процессов с различными характеристиками [1–4].

Задачи прикладного анализа случайных процессов включают математическое описание, моделирование, идентификацию и оценивание вероятностных характеристик, аппроксимацию базовых и функционально связанных вероятностных характеристик параметрическими моделями – функциями заданного вида, а также функциями базиса, выбор которого обусловлен свойствами анализируемых функций. В качестве такого семейства функций широко используются ортогональные функции, позволяющие обеспечить требуемую точность аппроксимации при сравнительно небольшом количестве членов разложения.

Данный подход позволяет получить аналитические модели типовых функциональных вероятностных характеристик случайных процессов: корреляционных и структурных функций, спектральных плотностей мощности, спектральных функций, функций распределения и плотностей вероятности, характеристических функций и обобщенных корреляционно-спектральных характеристик, полученных как в процессе имитационного моделирования, так и в ходе экспериментальных исследований и комплексных испытаний. Суть подхода заключается в следующем.

Представим модель вероятностной функциональной характеристики в виде разложения в ряд Фурье по ортогональным многочленам yk(x, g) с параметром масштаба g и весовой функцией m(x, g) [4, 5]:

,                                           (1)

Для минимизации квадратической погрешности приближения

 (2)

коэффициенты разложения – коэффициенты Фурье с учетом свойств ортогональных функций определяются выражением

                     (3)

Для вычисления остальных параметров модели следует решать задачи подбора в соответствии с выражением (2).

Таким образом, для построения ортогональной модели необходимо

1)    задать ортогональную систему функций yk(x, g);

2)    определить численное значение параметра масштаба g;

3)    определить коэффициенты разложения bk согласно (3);

4)    определить количество членов разложения ряда (1);

5)    определить корректирующие коэффициенты, обеспечивающие выполнение моделью основных свойств вероятностной функциональной характеристики, как правило, условия нормировки.

Обозначим временной ряд . На рисунке приведена графическая интерпретация аппроксимативного анализа вероятностных характеристик : в общем виде для произвольной вероятностной характеристики; для корреляционно-спектрального анализа, где =  – автокорреляционная функция; для взаимного корреляционно-спектрального анализа, где  – взаимная корреляционная функция. Заметим, что структура предлагаемых графических интерпретаций может варьироваться в зависимости от постановки задачи.

Первые научные работы в данном направлении были начаты в 1970 году на кафедре информационно-измерительной техники Куйбышевского политехнического института имени В.В. Куйбышева тогда еще студентом Прохоровым С.А. под руководством заслуженного деятеля науки и техники РФ, д.т.н. профессора Куликовского Л.Ф. и к.т.н. доцента Волкова И.И. и продолжены в Загребском университете (Югославия) на естественно-науч­ном факультете и институте «Руджер Бошкович» в «Центре исследования моря» под руководством профессора Б. Соучека. В настоящее время эти разработки развились в отдельное научное направление в Самарском государственном аэрокосмическом университете имени академика С.П. Королева (национальном исследовательском университете) на кафедре информационных систем и технологий. В рамках этой работы в университете под руководством Прохорова С.А. в период с 1988 по 2012 гг. подготовлены 24 кандидата и 4 доктора технических наук.

Работы в данном направлении позволили получить:

-      математическое описание, методы и алгоритмы моделирования случайных процессов, потоков событий, неэквидистантных временных рядов с заданными вероятностными характеристиками, а также методы и алгоритмы их оценки [5];

-      методы и алгоритмы анализа законов распределения, характеристических, корреляцион- но-спектральных и структурных функций, основанные на применении классического подхода, а также с использованием интервальной корреляционной функции [6, 7];

-      решение задач вторичной обработки временных рядов: идентификация случайных процессов по виду функциональной характеристики, аппроксимация законов распределения, характеристических, корреляционных, структурных функций, спектральных плотностей мощности параметрическими моделями, представляющими собой как функции заданного вида, так и ортогональные функции экспоненциального типа [5–7].

Разработка автоматизированных информационных систем для аппроксимативного анализа функциональных вероятностных характеристик и лабораторного практикума основана на применении как автоматизированных систем, так и математического пакета MATHCAD.

Важной особенностью этого направления стала апробация разрабатываемых методов и алгоритмов в программных комплексах, реализованных в разное время на языках Delphi, платформах .NET и J2EE. Такой подход, несмотря на некоторую трудоемкость, позволил апробировать разработанные методы и алгоритмы, провести анализ погрешностей аппроксимативного анализа методов имитационного моделирования и создать комплекс автоматизированных систем, способных решать конкретные практические задачи.

Функциональность разработанных автоматизированных систем включает:

-      моделирование случайных процессов и временных рядов с заданными характеристиками;

-      аппроксимацию корреляционно-спектраль­ных характеристик параметрическими моделями – функциями заданного вида и ортогональными функциями Лагерра, Лежандра, Якоби, Дирихле, Бесселя и др.;

-      графическое отображение результатов аппроксимации;

-      анализ погрешностей аппроксимации и исследование алгоритмов методом имитационного моделирования.

Следует отметить, что в рамках описываемых исследований также были получены алгоритмы аппроксимативного анализа вероятностных и корреляционно-спектральных характеристик неэквидистантных временных рядов, позволяющие существенно расширить область применения методов и средств статистического анализа случайных процессов. В частности, в настоящее время получены достаточно полезные результаты в области управления организационно-техничес­кими системами, транспортными сетями, позволяющие решать задачи анализа и синтеза сложных программных систем с распределенной архитектурой.

В целом с использованием разработанных специалистами Самарской научной школы профессора С.А. Прохорова методов и средств были решены следующие задачи: анализ гидрологических параметров в открытой части Балтийского моря, анализ звукопоглощающих характеристик самолетных конструкций, диагностика амортизаторов подвески автомобиля, анализ электрических сигналов нейронов, нервов и мышц, анализ вариабельности сердечного ритма, анализ котировок акций топливно-энергетической компании, комплексный анализ безопасности научно-производ­ственного предприятия. Разнообразие и сложность решаемых задач позволяют сделать вывод о высокой практической значимости разработанных методов и алгоритмов прикладного анализа случайных процессов и неэквидистантных временных рядов.

Кроме этого, созданные системы использо- вались при чтении лекций и выполнении лабо- раторных работ по ряду дисциплин в процессе подготовки студентов по специальностям «Информационно-измерительная техника», «Автоматизированные системы обработки информации и управления» во многих ведущих университетах Поволжья.

Литература

1.     Дедус Ф.Ф., Махортых С.А., Устинин М.Н., Дедус А.Ф. Обобщенный спектрально-аналитический метод обработки информационных массивов. Задачи анализа изображений и распознавания образов. М.: Машиностроение, 1999. 357 с.

2.     Дедус Ф.Ф. Достижения и перспективы развития обобщенного спектрально-аналитического метода в решении сложных информационных задач // Математические методы распознавания образов (ММРО-12): докл. 12-й Всеросс. конф. М.: ВЦ РАН, 2005. С. 84–86.

3.     Батищев В.И., Мелентьев В.С. Аппроксимационные методы и системы промышленных измерений, контроля, испытаний, диагностики. М.: Машиностроение-1, 2007. 393 с.

4.     Прикладной анализ случайных процессов / С.А. Прохоров, А.В. Графкин, В.В. Графкин [и др.]. Самара: Изд-во СНЦ РАН, 2007. 582 с.

5.     Прохоров С.А. Математическое описание и моделирование случайных процессов / Самара: СГАУ, 2001. 209 с.

6.     Прохоров С.А. Прикладной анализ неэквидистантных временных рядов / Самара: СГАУ, 2001. 375 с.

7.     Прохоров С.А. Аппроксимативный анализ случайных процессов. 2-е изд., перераб. и доп. Самара: СНЦ РАН, 2001. 380 с.



http://swsys.ru/index.php?id=3201&lang=%E2%8C%A9%3Den&like=1&page=article


Perhaps, you might be interested in the following articles of similar topics: