ISSN 0236-235X (P)
ISSN 2311-2735 (E)
3

13 Сентября 2024

Имитационное моделирование пневмогидромеханической системы в компьютерном тренажере


Иванов В.В. (ivanovsl-tver@mail.ru) - НИИ «Центрпрограмсистем», г. Тверь, Россия, Лаленков В.А. () - НИИ «Центрпрограмсистем» (зав. отделом ), Тверь, Россия
Ключевые слова: гидродинамика., пневматика, имитационное моделирование, тренажеры, программирование
Keywords: hydrodynamics, pneumatics, simulation, simulators, programming


     

Компьютерный тренажер, представляющий собой совокупность аппаратных и программных средств, предназначен для подготовки специалистов к выполнению действий по управлению материальными объектами и системами.

При разработке тренажера необходимо создать адекватную имитационную модель системы, в которой можно выделить две основные взаимосвязанные части: 1) имитация органов управления, пультов и их индикаторных процессов, с которой непосредственно взаимодействует обучаемый; 2) имитация физических процессов, протекающих в моделируемой системе при ее функционировании.

Моделируемая пневмогидромеханическая система (ПГМС), схематично изображенная на рисунке, представляет собой совокупность органов управления, клапанов, датчиков, емкостей, трубопроводов и т.д. Система имеет связи с внешними источниками газа и жидкости (магистральными трубопроводами, помещениями, атмосферой, водоемом).

При проведении тех или иных операций по элементам ПГМС происходит перетекание жидкости и газа, для их имитации на компьютере необходимо предварительно перейти от дифференциальных к конечно-разностным уравнениям.

Физико-математическая модель работы системы описывает процессы функционирования системы во времени, перемещение жидкости и газа, изменение давления в различных режимах.

Модель системы включает в себя уравнения зависимости расхода жидкости и газа от давления на концах трубопроводов, а также уравнения материального баланса.

Каждая емкость k характеризуется объемом Vk, давлением pk, массой газа mвk и объемом жидкости Vжk, в ней находящейся. Для имитации упругих свойств емкости и жидкости с каждой емкостью связывается упругое тело, имеющее объем Vрk и модуль Юнга E. Величина деформации ΔVрk этого тела связана с давлением pk внутри емкости выражением  где p0 – атмосферное давление.

Поскольку отдельные емкости соединяются трубопроводами с внешними источниками газа или жидкости, для расчета необходимо задать давление жидкости (Pж) и газа (Pг, Php, Pmp,) во внешних источниках.

Емкости могут через трубопровод соединяться с помещением, такое помещение можно представить как емкость с объемом VП, давлением pП, массой газа mП и объемом жидкости VжП .

Если в емкости i находится выталкиваемое тело с массой MП и сечением SП, для описания процессов в такой емкости добавляется VCi – свободный объем в емкости.

Подпись:  
Схема пневмогидромеханической системы
Каждый трубопровод ij, соединяющий емкости i и j (i¹j), характеризуется диаметром dij, длиной lij, коэффициентом гидравлического трения λij, наличием на концах клапанов, жидкости или газа.

На основе анализа состояния датчиков, клапанов трубопроводной системы, разницы давления на концах трубопроводов определяется, по каким трубопроводам и в каком направлении перемещаются жидкость или газ.

Выбор формул для расчета расхода жидкости и газа определяется числом Рейнольдса Re, которое находится следующим образом: , где v – скорость среды в трубе; ρ – плотность среды; dтр – внутренний диаметр трубы; η – коэффициент динамической вязкости среды.

Анализ моделируемой системы показал, что течению жидкости в трубопроводах соответствует турбулентный квадратичный режим с числом Re>104, течение газа происходит со скоростью, меньшей скорости звука, а коэффициент гидравлического трения λij можно считать постоянным.

Массовый расход газа и его направление в трубопроводе ij определяются по формуле

, здесь  где pi, pj – давление на концах трубопровода (pi>pj); μ – молярная масса газа; T – температура газа; R – универсальная газовая постоянная.

Объемный расход жидкости и его направление в трубопроводе ij определяются перепадом давления на его концах по формуле  здесь  где pi, pj – давление на концах трубопровода (pi>pj); ρ – плотность жидкости.

Если емкости i и j не соединяются между собой, то Tвij=Tжij=0.

При расчете расхода жидкости плотности r следует учитывать дополнительную разность давления Δpij, связанную с разницей уровней жидкости в емкостях Δhij, определяемую выражением Dpij=Dhijrg, где g – ускорение свободного падения.

Для каждой емкости вычисляются суммарные расход жидкости и газа. Суммарный расход может быть как положительным, так и отрицательным, соответственно увеличивающим или уменьшающим массу газа или объем жидкости в емкости.

Суммарный массовый расход газа QMk для емкости k:

где Ki=1, если трубопровод i соединен с емкостью k, по нему происходит перетекание газа (открыт соответствующий клапан) и на его втором конце находится газ под давлением pi>pk, иначе Ki=0; Kj=1, если трубопровод j соединен с емкостью k, на его конце, соединенном с емкостью, находится газ, по нему происходит перетекание газа (открыт соответствующий клапан) и на его втором конце давление pj

Суммарный объемный расход жидкости QVk для емкости k:

где Ki=1, если трубопровод i соединен с емкостью k, по нему происходит перетекание жидкости (открыт соответствующий клапан) и на его втором конце находится жидкость под давлением pi>pk, иначе Ki=0; Kj=1, если трубопровод j соединен с емкостью k, на его конце, соединенном с емкостью, находится жидкость, по нему происходит перетекание жидкости (открыт соответствующий клапан) и на его втором конце давление pj < pk, иначе Kj=0.

Величины Tжji и Tвij уточнялись при верификации имитационной модели.

Объем жидкости и масса газа, поступившие в емкость или истекшие из нее, равны произведению соответствующих суммарных расходов на малый интервал модельного времени Δt. При этом, если истекающие объем жидкости и масса газа меньше объема жидкости и массы газа, имеющихся в емкости, или если объем жидкости превысил объем емкости, модельный интервал времени Δt уменьшается и производится перерасчет по всей модели ПГМС. Величина модельного интервала времени Δt выбирается в пределах от 0,1 мкс до 1 мкс.

Масса газа в емкости k через Δt будет равна mвk=mвk+QMkΔt, объем жидкости Vжk=Vжk+QVkΔt.

Если mвk¹0 и Vжk¹0, установившееся давление p¢k в емкости определяется положительным решением уравнения

Если mвk=0 (в емкости только жидкость), установившееся давление определяется выражением

 Dpk=½p¢k–pk½.

В модели задано, что изменение давления Dpk в емкости за модельный интервал времени Δt не должно превышать наперед заданное значение ΔP (103 Па), в случае нарушения этого условия модельный интервал времени Δt уменьшается и производится перерасчет по всей модели ПГМС.

Движение тела массой MП с площадью поперечного сечения SП в цилиндрической емкости будет происходить под действием разницы давления DpП=Рж–p1. Ускорение aПi, скорость vПi и смещение ΔsПi тела вычисляются следующим образом: aПi=DpПSП/МП, vПi=vПi-1+aПiΔt, ΔsПi=vПi-1Δt+ , при этом свободный объем в емкости VCi за модельный интервал времени Δt изменится на ΔVПi = ΔsПiSП и VCi = VCi-1 + ΔVПi.

Имитационная модель реализована в виде библиотеки на VC++ с использованием объектно-ориентированного подхода. Библиотека содержит данные о структуре моделируемой системы: описание емкостей, их соединение трубопроводами между собой, с другими источниками жидкости или газа, внешней средой.

Начальные параметры моделируемой системы, давление и заполнение емкостей задаются при запуске тренажера. Интерфейс оператора, состоящий из панелей управления и контроля, задает и отображает состояние моделируемой системы. Состояние имитируемых органов управления (переключателей, манипуляторов, вентилей) преобразуется в набор входных параметров для имитационного моделирования процессов.

Расчетная часть библиотеки выполнена в виде последовательно выполняемых библиотечных функций вычисления расхода, изменения массы газа и объема жидкости, установившихся давлений.

Программа тренажера через равные интервалы времени ΔT=100 мс передает в библиотеку параметры Vk, Vжk, pk по каждой емкости, признаки открытия клапанов трубопроводов и наличия жидкости или газа на концах трубопроводов.

По завершении расчета библиотека возвращает в программу тренажера вычисленные значения V¢жk и p¢k для каждой емкости, а также величины, описывающие движение тела массы MП.

Исследование и оценка имитационной модели проводились на основе сопоставления времени выполнения различных операций в имитационной модели и в реальной системе. Имитационная модель показала свою пригодность для ее практического использования в компьютерных тренажерах.

Предложенные принципы построения физико-математической модели могут использоваться для моделирования разнообразных пневмогидродинамических систем.

Литература

1.     Советов Б.Я., Яковлев С.А. Моделирование систем: учеб. для вузов. М.: Юрайт, 2012.

2.     Павловский Ю.Н. Имитационное моделирование. М.: Издат. центр «Академия», 2008.

3.     Аметистов Е.В., Григорьев В.А., Емцев Б.Т. Тепло- и массообмен. Теплотехнический эксперимент: справочник. М.: Энергоиздат, 1982.

4.     Маршалов Е.Д., Нечаева О.А. Имитационное моделирование гидравлических систем с регулирующими органами // Вестн. ИГЭУ. Иваново. 2007. Вып. 4.

References

1.     Sovetov B.Ya., Yakovlev S.A., Modelirovanie sistem [System Modeling], 4th ed., revised and enlarged, Moscow, Yurayt, 2012.

2.     Pavlovsky Yu.N., Imitatsionnoe modelirovanie [Simulation Modeling], Moscow, Academiya publ. center, 2008.

3.     Ametistov E.V., Grigoriev V.A., Emtsev B.T., Teplo- i massoobmen. Teplotekhnicheskiy eksperiment: spravochnik [Heat- and mass exchange. Heat Engineering Experiment: guidebook], Moscow, Energoizdat, 1982.

4.     Marshalov E.D., Nechaeva O.A., Vestnik IGEU [The Bulletin of IGEU], iss. 4, Ivanovo, 2007.



http://swsys.ru/index.php?id=3600&lang=%E2%8C%A9%3Den&like=1&page=article


Perhaps, you might be interested in the following articles of similar topics: