ISSN 0236-235X (P)
ISSN 2311-2735 (E)
4

13 Декабря 2024

Алгоритм определения вероятности разрешения групповых воздушных объектов в районе аэродрома обзорными РЛС

DOI:10.15827/0236-235X.107.112-119
Дата подачи статьи: 28.02.2014
УДК: 621.398.96

Бердышев В.П. () - Военная академия воздушно-космической обороны им. Маршала Советского Союза Г.К. Жукова (профессор), г. Тверь, Россия, доктор технических наук, Кордюков Р.Ю. (romkord@yandex.ru) - Главное управление научно-исследовательской деятельности и технологического сопровождения передовых технологий МО РФ, ул. Профсоюзная, 84/32, г. Москва (зам. начальника Главного управления), Тверь, Россия, кандидат технических наук, Помазуев О.Н. (romkord@yandex.ru) - Главное управление научно-исследовательской деятельности и технологического сопровождения передовых технологий МО РФ (зам. начальника управления ), Москва, Россия, Миронов А.М. (ncuog@mail.ru) - МО РФ (референт зам. министра обороны РФ ), Москва, Россия, Стучилин А.И. (res69e6@mail.ru) - Научно-исследовательский центр «Резонанс» (зам. генерального директора ), Москва, Россия, кандидат технических наук
Ключевые слова: вероятность разрешения, разрешающая способность, воздушные объекты, алгоритм
Keywords: resolution probability, resolving power, air object, algorithm


     

Тактические требования к разрешающей способности обзорных аэродромных радиолокационных станций (РЛС) определяются возникающей плотностью размещения воздушных объектов (ВО) в районе аэродрома и необходимостью обеспечения безопасности полетов, которые зависят от летно-технических данных самолетов, их навигационного оборудования, а также возможностей средств управления. При выборе маршрута полета необходимо избегать опасных ситуаций, обеспечивать навигационную безопасность и выгодные условия полетов.

 

Разрешение ВО осуществляется по выходному сигналу системы обработки принимаемых сигналов РЛС, несущему информацию о координатах и скорости ВО. Разрешение может быть основано на разделении сигналов по любому из параметров: дальности, угловым координатам, радиальной скорости цели. Различия ВО по этим параметрам проявляются соответственно в разном времени запаздывания отраженных от них сигналов, различном направлении прихода этих сигналов и в различных доплеровских смещениях несущей частоты.

Простые радиоимпульсы не позволяют совместить большую дальность действия РЛС с высокой разрешающей способностью (dr) и точностью по дальности, так как первое требует больших, а второе – малых по длительности импульсов. Противоречие разрешается путем использования сложных радиоимпульсов – зондирующих импульсов большой длительности tи с внутренней частотной или фазовой модуляцией. Внутриимпульсная модуляция расширяет спектр излучения от DfСП =1/tИ до Df¢СП, а оптимальный фильтр приемника при обработке разрушает внутриимпульсную модуляцию, сохраняя ширину спектра, и тем самым уменьшает длительность импульсов от tи до t¢и = 1/Df¢СП [1–3].

Применение широкополосных сигналов позволяет увеличить дальность действия РЛС при сохранении высокой разрешающей способности по дальности, измерять одновременно дальность и скорость цели, повысить помехозащищенность РЛС от активных и пассивных помех. Решение этих важных задач во многом определяется не только трактом формирования широкополосных зондирующих сигналов, но и качеством построения систем оптимальной обработки [1].

Примерами широкополосных сигналов являются зондирующие сигналы с линейной частотной модуляцией (ЛЧМ), частотной модуляцией по V-образному закону, нелинейным законом изменения частоты (НЧМ), с фазокодоманипулированными сигналами (ФКМ), бинарные коды или коды Баркера, последовательности максимальной длины (М-последовательности), многочастотные зондирующие сигналы (МЧЗС).

Реальная разрешающая способность при применении указанных зондирующих сигналов зависит от их параметров (длительности импульса, вида модуляции) и возможностей индикаторов кругового обзора (ИКО) – диаметра пятна электронно-лучевой трубки (ЭЛТ), установленного масштаба дальности, диаметра ЭЛТ.

Реальная разрешающая способность по дальности [1] определяется выражением dD =dD П+dD И= = 0,5 c τИ + dП MD.

Для сигнала в виде прямоугольного импульса потенциальная разрешающая способность по дальности равна dD П = 0,5c τИ. Разрешающая способность индикатора по дальности dD И = dП MD. В РТС старого парка, где осуществляется визуальный съем информации с индикаторов, разрешающая способность зависит в большей степени от диаметра сфокусированного луча на экране ЭЛТ dП, размеров ЭЛТ L, масштаба отображения обстановки (масштаб отображения по дальности МD ≈ Dmax / L).

Разрешающая способность по азимуту [1] может быть представлена выражением db = dbП+dbИ, где db П » b0.5P – потенциальная разрешающая способность по азимуту; b0.5P = С0,5P λ/L – ширина ДНА по уровню половинной мощности; С0,5P – коэффициент, зависящий от вида амплитудного распределения на раскрыве антенны; λ – длина волны; L – действующая длина антенны; db И = d П Mb – разрешающая способность индикатора по азимуту, зависящая от диаметра пятна ЭЛТ dП, установленного масштаба отображения по азимуту для ИКО Mb = 1/LЦ (где LЦ – расстояние от центра экрана индикатора до отметки цели), вида развертки (круговая, секторная и т.д.).

Таким образом, потенциальная разрешающая способность по азимуту определяется шириной ДНА в горизонтальной плоскости по уровню половинной мощности. Аналогичным образом определяется разрешающая способность по углу места.

Известно, что для повышения разрешающей способности по азимуту необходимо минимизировать значения слагаемых, представленных в формуле для реальной разрешающей способности по координате. Традиционными решениями задачи улучшения углового разрешения в радиолокации являются увеличение линейных размеров антенны и уменьшение длины волны излучения [1–3]. Эти методы сужения ДН антенны ограничены техническими и технологическими возможностями.

Применительно к аэродромным РЛС сектор обзора для всех обзорных станций выбирается равным 360°, для посадочных РЛС сектор обзора Δb должен составлять не менее 30° для курсового канала и не менее 9° для глиссадного канала. Предельно допустимое время обзора пространства Тmax должно быть не более 12 с для всех трассовых радиолокаторов, не более 6 с для радиолокаторов типа ОРЛ-А варианта В1 и не более 4 с для ОРЛ-А варианта В2. Для посадочных радиолокационных станций Тmax должно быть не более 1 с [4].

При определении максимальных и минимальных значений ширины диаграммы направленности антенн обзорных радиолокаторов b0.5P следует ориентироваться на требования к разрешающей способности станций по азимуту δb. Для трассовых радиолокаторов всех вариантов максимальное значение δb должно быть меньше 1,5°, для аэродромных радиолокаторов – меньше 2°. Пересчет азимутальной разрешающей способности δb на соответствующую ширину диаграммы направленности антенны можно сделать по формуле dbmax = = ξbb0.5P, где коэффициент ухудшения потенциальной разрешающей способности радиолокатора по азимуту ξb может быть выбран равным 1,5 [4].

Минимальное значение ширины диаграммы направленности b0.5P min определяется исходя из условия получения предельно допустимого количества принимаемых импульсов в пачке. По требованиям, предъявляемым к аппаратуре первичной обработки радиолокационной информации, количество импульсов в пачке должно быть не менее 12. Расчет предельного минимального ко­личества импульсов в пачке n может быть произведен по формуле b0.5P min = 2nRmax360ºKзап/Тобз с, где Rmax – максимальная дальность действия радиолокатора; Кзап – коэффициент запаса, который для определенности может быть принят равным 1,5 для трассовых РЛС и 2 для аэродромных и посадочных радиолокаторов; Тобз – период обзора пространства; с – скорость света.

Для посадочных радиолокаторов минимальная и максимальная ширина диаграммы направленности антенны определяется техническими возможностями реализации антенн с заданными характеристиками, получением необходимой угловой точности и количеством импульсов в пачке. В качестве компромиссных решений могут быть выбраны фиксированные значения ширины диаграммы направленности 0,62º для курсового канала и 0,44º для глиссадного канала [4].

Перспективным для увеличения углового разрешения в РЛС является инверсное радиолокационное (обращенное) синтезирование апертуры (ИРСА), при котором происходит увеличение размеров антенны за счет относительного перемещения ВО [1, 5, 6].

В этой связи для оценки возможностей существующих и перспективных РЛС по разрешению групповых ВО необходим алгоритм решения данной задачи, позволяющий, например, лицу, принимающему решение при выборе образца РЛС, сравнить альтернативные варианты.

Цель статьи – показать алгоритм определения вероятности разрешения групповых воздушных объектов в районе аэродрома обзорными РЛС с существующими и улучшенными разрешающими способностями по дальности и азимуту.

Известно, что для раздельного наблюдения ВО необходимо, чтобы разрешающая способность по плоскостным координатам dXY была не хуже значений безопасных интервалов и дистанций. Связь между разрешающей способностью по плоскостным координатам ВО dXY и требуемы- ми разрешающими способностями по дальности dr и азимуту db определяется выражением , где δlβ – линейная разрешающая способность по азимуту, δlβ = R0db/57,3, R0 – дальность до цели [1].

Эффективность РЛС по вскрытию группы ВО и определению ее состава будем оценивать вероятностью разрешения ВО в группе Pr [7].

Пусть расстояние между ВО, определяемое соображениями безопасности полета или обеспечения минимума потерь от огневого воздействия активных средств ПВО, лежит в пределах lÎ[lmin, lmax], а взаимное угловое расположение – в пределах θ Î [0, 2p]. Тогда область возможных положений второй цели представляется в виде кольца (рис. 1), площадь которого

.                                                (1)

Определим вероятность разрешения целей в группе при равновероятных законах распределения значений l и θ, то есть при p(l) = 1/ (lmax – lmin) и p(θ) = 1 /2π, для следующих случаев.

Случай 1: lmin< dr < lmax; lmin< δlβ < lmax [7].

Из рисунка 1 видно, что разрешение будет иметь место, если вторая цель попадет в заштрихованную область. Вероятность этого события

Рr = SЗ /SК,                                                               (2)

где SЗ – площадь заштрихованной области.

Нетрудно увидеть, что при дальности R >> dr

SЗ = π l2max – 4dr δlβ = π l2max – 4R0dr δβ/57,3.         (3)

Подставив (1), (3) в (2), получим

.                               (4)

Случай 2: lmin< dr < lmax и l max < δlβ [7].

Рr = 2SСЕГ /SК, где SСЕГ – площадь сегмента, вычисляемая по формуле SСЕГ = SСЕКТ – SΔ = l2maxφ / / 2 – lmax sin (φ/2) lmax cos (φ/2) [8].

Отсюда ,                             (5)

где φ = 2 аrссоs (dr /1mах), lmax =dr /соs(φ/2).

Случай 3: lmin< dr < lmax и lS < δlβ < lmax.

Так как SЗ =2(S¢СЕГ +S¢¢СЕГ),

,                        (6)

где lmax =dr /соs(φ1/2).

Случай 4: l min< dr < l max и l min > δlβ .

Так как SЗ = SК – 2SΔ, SΔ = 2δlβ (dr – l min),

.                                         (7)

Случай 5: δlβ > l max и dr < l min.

Поскольку SЗ = SК – 2SΔ, SΔ = 2dr (δlβ – l min),

.                                       (8)

Случай 6: l min< δlβ < l max и dr < l max .

Так как SЗ = SК – 2SΔ, SΔ = 2dr (l max – l min),

.                                        (9)

Случай 7: dr > l min и δlβ < l max.

Так как SЗ = 2SСЕГ и ,

.                                              (10)

Случай 8: dr < lmin и δlβ < lmin, Pr = 1 [7].

Случай 9: dr ≥ lmax и δlβ ≥ lmax, Pr = 0 [7].

На рисунке 1 обозначено: lmах (lmin) – максимальное (минимальное) расстояние между двумя целями, определяемое требованием к обеспечению минимума потерь от огневого воздействия средств ПВО (соображениями безопасности полета); – среднее расстояние между ВО; углы в радианах: φ = 2 аrссоs (dr /lmах); φ1 = 2 аrссоs (δlβ /lmaх), φ2 = 2 аrссоs (δlβ /lmin). Распределение положения второй цели в интервале (lmin, lmах) считается равновероятным.

Соотношения (4)–(10) позволяют определить вероятность разрешения двух целей в группе при известных БП авиации противника и заданных разрешающих способностях РЛС по дальности и азимуту [7].

При наличии n целей в группе вероятность их разрешения равна произведению вероятностей разрешения всевозможных пар целей:

                                           (11)

Число сомножителей в (11) равно числу сочетаний из n по два. Очевидно, что показатель эффективности РЛС Рr при постоянных значениях lmах, lmin, λ0 и dr определяется азимутальной разрешающей способностью δβ РЛС, достигаемой за счет использования метода инверсного синтезирования апертуры (ИРСА) [5, 6].

Таким образом, для раздельного наблюдения целей необходимо, чтобы разрешающая способность по плоскостным координатам dXY была не хуже значений безопасных интервалов и дистанций. Предложены геометрические соотношения для расчета вероятности разрешения ВО в группе и получены аналитические формулы для 6 случаев, из которых (6)–(10) новые.

Для исследования вероятности Рr был разработан алгоритм определения вероятности разрешения целей в группе обзорными РЛС с улучшенными разрешающими способностями. Алгоритм состоит из следующих этапов.

1. Ввод исходных данных: λ – длина волны РЛС в м, lmах (lmin) – максимальное (минимальное) расстояние между двумя ВО; Vt – тангенциальная составляющая скорости перемещения ВО; δr – разрешающая способность по дальности (поперечной); Tk – время когерентного накопления и синтезирования апертуры TS; LS – длина синтезируемой апертуры; R0 – дальность до цели; δlβ – линейная разрешающая способность по азимуту.

2. Установка начального значения счетчика nn=1.

3. Определение параметров синтезированной апертуры.

4–20 (четные). Проверка условий работы формул для 9 рассматриваемых случаев.

5–21 (нечетные). Вычисление вероятности разрешения ВО в группе для 9 рассматриваемых случаев.

22. Проверка условия выхода из цикла по заданному параметру.

23. Обновление значения счетчика nn = nn+1.

24. Вывод результатов на печать в виде одиночных и совокупности графиков зависимости вероятности разрешения ВО в группе Рr от выбранных параметров.

По предложенному алгоритму разработана программа на языке инженерных и математических вычислений MATLAB 6.5. В качестве примера на рисунке 2 показаны зависимости вероятности разрешения ВО в группе обзорной РЛС типа 5Н84АМ без (пунктир на рис. 2б, в) и при использовании режима ИРСА (сплошная) от дальности R0 и угла наблюдения α при заданных параметрах lmах, lmin, Vt, δr и λ. Из рисунка видно, что ИРСА позволяет существенно повысить дальность разрешения целей в группе как малоскоростных, так и скоростных ВО при различных параметрах δr, δlβ и условиях наблюдения.

На рисунке 3 представлены зависимости вероятности разрешения ВО в группе для РЛС сантиметрового диапазона при использовании режима ИРСА от дальности R0, разрешающей способности по дальности и угла наблюдения α при заданных параметрах lmах, lmin ,Vt, δr и λ. Различные формы представления результатов расчета показаны на рисунке 4.

Проведенное исследование и сравнение рисунков 2–4 показывают следующее.

При наблюдении неразрешаемых ВО для характеристики качества функционирования системы формирования изображения следует исполь- зовать вероятность Рr разрешения ВО в группе, которая определяется для конкретных значений времени корреляции Тk и времени синтезирования TS. Важными параметрами являются тангенциальная скорость цели Vt и дальность R0.

При обеспечении в РЛС сантиметрового (λ = 0,1 м) и дециметрового диапазонов высокого разрешения по дальности ВО в группе (единицы метров) можно наблюдать отдельно. В этом случае целесообразно формировать радиолокационные изображения одиночных ЛА. Для существующих и перспективных РЛС этих диапазонов, имеющих разрешение по дальности порядка 100...300 м, целесообразно формировать ИРСА по групповым ВО с параметрами движения R0 = 50, ..., 100 км, Vt > 100 м/с. При этом время наблюдения должно составлять более 0,5 с.

При функционировании системы формирования изображения «на проходе» (время синтезирования апертуры TS ≈ 0,54 с) наибольшее увеличение вероятности Рr происходит для ВО на дальности R0 ≈ 50 км с тангенциальной скоростью перемещения Vt = 200 м/с и на дальности R0 ≈ 100 км при Vt = 600 м/с.

Для РЛС М-диапазона (λ = 1,5 м) целесообразно формировать ИРСА при нахождении в зоне обзора на дальности R0 < 100 км групповых ВО, движущихся со скоростью Vt > 100 м/с.

Следует отметить, что показатель эффективности РЛС по разрешению ВО в группе Рr при постоянных значениях lmах, lmin, λ0 и dr определяется ее азимутальной разрешающей способностью δβ, улучшить которую можно за счет использования метода инверсного синтезирования апертуры.

Разработанный алгоритм может быть использован для оценки возможностей существующих и перспективных РЛС по разрешению групповых ВО с различными разрешающими способностями по дальности и азимуту, а также обоснования их параметров для получения дальностных и азимутальных портретов в интересах распознавания классов и типов ВО, например, ЛПР в процессе выбора образца РЛС при сравнении альтернативных вариантов.

Литература

1.     Бердышев В.П., Куликов В.Н., Мойсеенко П.Г. [и др.]. Системотехнические основы построения вооружения радиотехнических войск. Ч. 1. Радиолокационная система РТВ. Получение и обработка радиолокационной информации. Воздействие активных помех и защита от них. Тверь: Изд-во ВА ВКО, 2008. 224 с.

2.     Бердышев В.П., Гарин Е.Н., Фомин А.Н. [и др.]. Радиолокационные системы. Красноярск: Изд-во Сиб. федер. ун-та, 2011. 400 с.

3.     Тяпкин В.Н., Бердышев В.П., Гарин Е.Н. [и др.]. Основы построения РЛС РТВ. Красноярск: Изд-во Сиб. федер. ун-та, 2011. 536 с.

4.     Перевезенцев Л.Т., Огарков В.Н. Радиолокационные системы аэропортов: учеб. для вузов гражданской авиации. 2-е изд., перераб. и доп. М.: Транспорт, 1991. 360 с.

5.     Митрофанов Д.Г., Силаев Н.В. Использование многочастотного узкополосного зондирующего сигнала для построения двумерного радиолокационного изображения объекта // Радиоэлектроника. 2000. Т. 43. № 12. С. 39–46.

6.     Митрофанов Д.Г. Триангуляционный способ построения двумерного радиолокационного изображения в РЛС сопровождения с инверсным синтезированием апертуры. Патент РФ № 2099742. 2000.

7.     Основы построения РЛС РТВ; [под ред. Б.Ф. Бондаренко]. Киев: КВИРТУ ПВО, 1987. 368 с.

8.     Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. М.: Наука, 1980. 976 с.

References

1.     Berdyshev V.P., Kulikov V.N., Moyseenko P.G. Sistemo­tekhnicheskie osnovy postroeniya vooruzheniya radiotekhniches­kikh voysk. Chast 1. Radiolokatsionnaya sistema RTW. Poluchenie i obrabotka radiolokatsionnoy informatsii. Vozdeystvie aktivnykh pomekh i zashchita ot nikh [System fundamentals of radio-technical troops arming. Part 1. RTT radar system. Obtaining and processing radar information]. Tver, 2008, 224 p.

2.     Berdyshev V.P., Garin E.N., Fomin A.N. Radioloka­tsionnye sistemy [Radar systems]. Krasnoyarsk, Sib. Fed. Univ. Publ., 2011, 400 p.

3.     Tyapkin V.N., Berdyshev V.P., Garin E.N. Osnovy postro­eniya RLS RTV [Fundamentals of RTT radar systems]. Krasnoyarsk, Sib. Fed. Univ. Publ., 2011, 536 p.

4.     Perevezentsev L.T., Ogarkov V.N. Radiolokatsionnye sis­temy aeroportov [Airports radar systems]. Textbook for civil aviation universities. 2nd ed. Moscow, Transport Publ., 1991, 360 p.

5.     Mitrofanov D.G., Silaev N.V. Use of multifrequency narrow-band sounding signal to create 2D radar object image. Izvestiya vysshikh uchyebnykh zavedeniy. Radioelektronika [Radio­electronics and Communications Systems]. 2000, vol. 40, no. 12, pp. 39–46.

6.     Mitrofanov D.G. Triangulyatsionny sposob postroeniya dvumernogo radiolokatsionnogo izobrazheniya v RLS soprovozh­deniya s inversnym sintezirovaniem apertury [A triangulation method for making 2D radar image in inverse radio synthetic aperture radars]. Patent 2099742 (RF), 2000.

7.     Bondarenko B.F. Osnovy postroeniya RLS RTV [Fundamentals of RTT radar systems]. Kiev, KVIRTU PVO Publ., 1987, 368 p.

8.     Bronshtein I.N., Semendyaev K.A. Spravochnik po matematike dlya inzhenerov i uchashchikhsya vtuzov [Mathematics guide for engineers and technical college students]. Moscow, Nauka Publ.,1980, 976 p.



http://swsys.ru/index.php?id=3869&lang=%E2%8C%A9%3Den&like=1&page=article


Perhaps, you might be interested in the following articles of similar topics: