Авторитетность издания
Добавить в закладки
Следующий номер на сайте
Объектно-ориентированная имитационная модель мультисервисной IP-сети
Аннотация:
Abstract:
Авторы: Мельников А.В. () - , Домбровский К.А. () - | |
Ключевое слово: |
|
Ключевое слово: |
|
Количество просмотров: 15296 |
Версия для печати Выпуск в формате PDF (1.17Мб) |
Характерной тенденцией современного этапа развития компьютерных сетей является принципиальное изменение структуры передаваемого ими трафика. Трафик сетей доступа в Интернет, а также сетей крупных предприятий стал мультимедийным. При этом постоянно разрабатываются и внедряются новые алгоритмы, протоколы и технологии, улучшающие качество передачи трафика реального времени в IP-сетях. Как следствие –существенное усложнение архитектуры сетей TCP/IP, которые теперь характеризуются не просто как сети передачи данных, а как мультисервисные. Все это делает применение аппарата аналитического моделирования для исследования вновь создаваемых алгоритмов и протоколов достаточно сложным, а зачастую и невозможным. Альтернативным подходом являются имитационные модели компьютерных сетей, которые могут быть сколь угодно близки к моделируемой системе. В большинстве существующих сетевых симуляторов создание и внедрение модуля вновь разрабатываемого протокола затрагивает если не всю, то большую часть архитектуры имитационной модели сети, так как возникает необходимость модификации других модулей. Таким образом, возникает зависимость между разработчиками. В этой связи актуальной является задача применения концепции объектно-ориентированного проектирования и анализа для построения имитационной модели мультисервисной сети. Объектно-ориентированная имитационная модель мультисервисной IP-сети В рамках подхода объектно-ориентированного анализа и проектирования имитационная модель мультисервисной сети представляет собой модель сложной системы, а именно: · логическая структура мультисервисной сети включает в себя модель сетевой топологии, узла и линии связи; · функциональная составляющая концептуальной модели представлена моделью сетевой нагрузки, генерирующей сетевой трафик; · физическая модель сети является реализацией разработанной имитационной модели в рамках выбранного программного пакета. Логическая структура объектно-ориентированной имитационной модели сети представлена с использованием нотации унифицированного языка моделирования UML на рисунке 1. Сетевой узел (класс Node) представлен моделью стека сетевых протоколов (класс ProtocolStack). Семиуровневая иерархия эталонной модели ISO/OSI нашла отражение в абстрактных классах Physical, DataLink, Network, Transport и Application. Последние три уровня модели общепризнано считаются избыточными и представлены классом Application. Далее указываются классы основных протоколов стека TCP/IP, относящиеся к тому или иному уровню. Объединение протоколов в стек указывается через отношение агрегации к классу TCP/IP, который, в свою очередь, является дочерним по отношению к классу ProtocolStack. Каждый протокол имеет собственный формат сообщения. Все сообщения являются дочерними классами по отношению к абстрактному классу Message, который, в свою очередь, является составляющей класса CALL. Данный класс представляет собой вызов, который производит протокол для осуществления вертикального взаимодействия в рамках стека. Взаимосвязь узла и линии связи указана через отношение ассоциации между классом сетевого интерфейса NIC и классом интерфейса линии связи Connector. Сама линия связи представлена классом Link. Проведенный авторами анализ показывает, что типовые сетевые топологии не позволяют учесть существенных свойств Интернет-сетей. Поэтому для имитационной модели предложено расширение модели «узкое горло» – модель «многоканальность», которая показана на рисунке 2. Условно схема разделена на четыре области: сеть клиента, сеть Интернет-провайдера (ИП), сеть национального провайдера и магистральная сеть. В имитационной модели для генерации потока пакетов используются три типа источников трафика – VoIP, HTTP и FTP, которые представляют функциональную компоненту концептуальной модели. Модель источника VoIP-трафика можно разбить на три подмодели: модель голосового источника, модель выбора голосового кодека, модель потока звонков. Поведение голосового источника традицион- но описывается моделью Брэди. Ключевыми элементами модели разговора человека являются активная речь (ON-период), паузы (OFF-период) и законы распределения длительности этих периодов. До настоящего момента было проведено и опубликовано множество работ, авторы которых пытались на основе большого количества статистических данных установить адекватные вероятностные законы распределения ON- и OFF-периодов. Результаты последних исследований (см.: Biernacki A. Statistical analysis of VoIP streams. 7th Conference „Internet – Wroclaw 2005”) показывают, что ON/OFF-периоды распределены согласно законам Парето и Вейбулла. Авторами работы классическая модель Брэди была расширена путем введения третьего состояния – временной интервал между двумя звонками пользователя, состояние AIT (Average InterCall Time). В модели источника VoIP трафика используется кодек сжатия голоса G.729 Annex B. В модели потока звонков определяются законы распределения времени между двумя звонками с одного источника и длительности самого звонка. Модель источника трафика IP-телефонии представлена на рисунке 3. Параметры модели приведены в таблице 1. Таблица 1 Параметры имитационной модели трафика VoIP
Для определения и описания структурных параметров модели web-трафика используется абстракция web-сеанса, которая включает в себя понятия страницы и объекта. Данная абстракция была предложена в SURGE-модели (см.: Barford P., Crovella M. Generating representative web workloads for network and server performance evaluation). В рамках данной модели процесс генерации web-трафика рассматривается как бесконечный цикл запросов web-страниц пользователем через определенный интервал времени. К особенности данной модели следует отнести два OFF-периода «негенерации» трафика в сеансе. Неактивный OFF-период представляет собой время, которое пользователь тратит на просмотр текущей web-страницы. В общем случае web-страница представляет собой совокупность нескольких объектов: текст, графика и т.д. Активный OFF-период представляет собой время на разборку браузером web-страницы и подготовки нового TCP-соединения для запроса web-компонент. Детали передачи компонент web-страницы зависят от используемого браузера и версии протокола HTTP. В рамках разработанной имитационной модели используется эмуляция протокола HTTP 1.1. Значения статистических параметров модели web-трафика взяты из работы Markovski V. «Simulation and Analysis of Loss in IP Networks» (табл. 2). Таблица 2 Параметры имитационной модели web-трафика
FTP-трафик не является основным в мультисервисной сети, но он обеспечивает большую нагрузку на канал, так как формирует постоянный неинтерактивный поток. Для определения и описания структурных параметров модели используется абстракция ftp-сеанса, которая включает в себя понятие файла. Количественные и временные характеристики сеанса, как и в случае с голосовым и web-трафиком, определяются с помощью статистических вероятностных распределений и взяты из спецификации, предложенной институтом IEEE в рамках стандарта IEEE 802.20 (табл. 3.). Физическая модель сети является реализацией разработанной имитационной модели в рамках выбранного программного пакета AnyLogic. Структура классов и схема их взаимодействия в программно реализованной имитационной модели мультисервисной сети соответствует логической структуре модели на рисунке 1. Таблица 3 Параметры имитационной модели ftp-трафика
Адекватность разработанной модели Один из наиболее очевидных подходов к проверке точности модели состоит в сравнении выходов модели и реальной системы при одинаковых входах. Используя соответствующий критерий для двух выборок, можно проверить статистические гипотезы о том, что выборки выходов системы и модели являются выборками из различных совокупностей или что они практически принадлежат одной генеральной совокупности. Таблица 4 Результаты обработки экспериментальных выборок согласно критерию Вилкоксона
Для получения выборок реальной системы был создан программно-аппаратный макет. Потоки HTTP, FTP и VoIP пакетов эмулируются генератором трафика «Distributed Internet Traffic Generator». С использованием критерий Вилкоксона был произведен сравнительный анализ выборок, полученных в ходе натурного и имитационного экспериментов. Результаты расчетов приведены в таблице 4 и свидетельствуют об адекватности разработанной имитационной модели. Разработанная объектно-ориентированная имитационная модель мультисервисной IP-сети предоставляет возможность исследователю добавлять собственные и заменять существующие классы сетевых объектов, не меняя при этом концептуальную структуру модели. Таким образом, достигается независимость между разработчиками. Доказана адекватность разработанной объектно-ориентированной имитационной модели мультисервисной сети на основе характеристик трафика, полученных с использованием натурного стенда измерений характеристик качества обслуживания мультимедийного трафика. |
Постоянный адрес статьи: http://swsys.ru/index.php?id=394&page=article |
Версия для печати Выпуск в формате PDF (1.17Мб) |
Статья опубликована в выпуске журнала № 2 за 2007 год. |
Возможно, Вас заинтересуют следующие статьи схожих тематик:
- Формулировка задачи планирования линейных и циклических участков кода
- Эвристические и точные методы программной конвейеризации циклов
- Общее информационное пространство задач кораблестроения. Концепция построения информационной модели
- Искусственный интеллект в грядущем десятилетии
- Информационная система оптимизации расписания доставки грузов от производителей сырья
Назад, к списку статей