ISSN 0236-235X (P)
ISSN 2311-2735 (E)
1

16 Марта 2024

Построение модели транспортной инфраструктуры на основе пространственно-спектральной аэрокосмической информации

DOI:10.15827/0236-235X.121.025-031
Дата подачи статьи: 12.12.2017
УДК: 528.88

Федосеев А.А. (fedoseevale@gmail.com) - Самарский национальный исследовательский университет им. академика С.П. Королева (начальник сектора), Самара, Россия, Михеева Т.И. (mikheevati@its-spc.ru) - Самарский государственный аэрокосмический университет им. академика С.П. Королева (национальный исследовательский университет) (профессор), Самара, Россия, доктор технических наук, Михеев С.В. (mikheevati@its-spc.ru) - Самарский государственный аэрокосмический университет им. академика С.П. Королева (национальный исследовательский университет (доцент), Самара, Россия, кандидат технических наук
Ключевые слова: геоинформационная система, тематический слой, стратификация, транспортная сеть, транспортная инфраструктура, гиперспектральная информация, дистанционное зондирование земли
Keywords: geoinformation system, thematic layer, stratification, transportation network, transport infrastructure, hyperspectral information, earth remote sensing


     

Увеличение протяженности и повышение качества автомобильных дорог относятся к ряду приоритетных мероприятий по модернизации транспортных систем регионов. При этом актуальной становится задача оперативного выявления изменений характеристик и состояния объектов транспортной инфраструктуры (ТрИ). Значительная площадь территории и большое число субъектов России диктуют необходимость разработки и внедрения специальных подходов к решению указанной задачи на основе использования данных дистанционного зондирования Земли (ДЗЗ). Современные оптико-электронные системы ДЗЗ, обладая высокими техническими характеристиками, позволяют получать высокодетальные космические снимки, покрывающие значительные по площади территории. Гиперспектральные сенсоры, размещаемые на беспилотных летательных аппаратах, позволяют получать информацию об объектах в виде гиперкуба, включающего в себя пространственную и спектральную информацию об объекте. Важным аспектом использования гиперспектральной информации является разработка специализи- рованных подходов к ее интерпретации с целью высокоточного распознавания объектов, присутствующих в рассматриваемой сцене.

Системное описание предметной области

Для системного описания предметной области, построения ее информационной структуры предложено использовать концептуальную модель, позволяющую на уровне абстракции интерпретировать имеющиеся данные. В результате такой интерпретации данные рассматриваются в качестве источника знаний, используемых в дальнейшем для построения тематических слоев электронной карты. Модель предметной области описывается на основе стратифицированной модели информационного пространства ДЗЗ ТрИ [1]. Стратифици- рованная модель дает возможность преодолеть схематическую условность математического моделирования природного и техногенного мира [2]. Многие нерегулярные объекты и динамические процессы представлены как результат строгих функциональных зависимостей, а их визуализация в виде тематических слоев электронной карты перестала восприниматься как хаос и случайное нагромождение форм и траекторий. Графически модель представляется в виде совокупности вложенных сферических оболочек (страт), определяемых триадой {S, Q, y}, где S – множество страт информационного пространства; Q – множество отображений; y – множество инвариантов. Каждая страта объединяет совокупность однотипных информационных объектов и, в свою очередь, может быть расслоена для получения требуемого уровня детализации. Это позволяет получить требуемый уровень детализации для любого информационного объекта и любой страты. При декомпозиции используется «вырезка» из информационного пространства в виде конуса (рис. 1).

Введем отображения из любой страты в каждую, что позволяет связывать данные разных страт. При этом необходимо обеспечить сохранение инвариантов страт – совокупности существенных и неизменяемых свойств информационных объектов каждой страты.

Информационное пространство ДЗЗ в области управления характеристиками и состоянием ТрИ  стратифицируется на три базовые страты: информационная инфраструктура D, методическая инфраструктура M и функциональная инфраструктура C. В свою очередь, страта информационной инфраструктуры расслаивается на страту данных ДЗЗ  страту объектов ТрИ, подлежащих дистанционному зондированию  и страту описания имманентных свойств объектов  Страта методической инфраструктуры  расслаивается на страты методов обработки информации ДЗЗ CM, страта функциональной инфраструктуры C расслаивается, в свою очередь, на страту программных средств обработки этой информации CT (страта сбора данных, страта хранения данных, страта обработки данных, страта визуализации тематических слоев в геоинформационной системе). Введем отображение страт:    Инвариантами y являются задачи настоящей предметной области, решаемые с использованием данных ДЗЗ.

Схема информационной поддержки управления характеристиками и состоянием объектов ТрИ

Анализ методов, средств и подходов к решению задач позволил предложить двухуровневую схему информационной поддержки управления характеристиками и состоянием объектов ТрИ на основе данных ДЗЗ (рис. 2). Уровни включают в себя страты информационной D и методической ин- фраструктуры M. Страта функциональной инфраструктуры C содержит данные геоинформаци- онной модели, обеспечивающей актуализацию данных, хранящихся в БД, и их визуализацию на электронной карте [3].

На макроуровне решаются задачи функциональной инфраструктуры C: поиска изменений конфигурации транспортной сети (ТрС) [4] и оценки ее загруженности динамическими объектами – автотранспортом – на основе использования космических снимков высокого пространственного разрешения, охватывающих значительные по площади участки земной поверхности.

Как правило, комплект исходных данных для макроуровня включает в себя набор из четырехканального (каждый из каналов соответствует синей, зеленой и ближней инфракрасной областям спектра) и панхроматического изображений.

В основе решения задачи поиска изменений конфигурации транспортной сети (ТрС) [5] макроуровня лежит задача построения тематического слоя элементов ТрС в результате автоматизированного экстрагирования этих элементов на космических снимках. Результаты обработки далее сопоставляются с содержащейся в БД информацией о конфигурации ТрС. Реализация второго направления данного уровня достигается путем построения тематического слоя динамических объектов ТрИ на основе сегментации этих объектов на снимках с последующей оценкой загруженности ТрС. В качестве исходных данных также используется тематический слой элементов ТрС в виде маски соответствующих объектов, предварительно синтезированный в ходе реализации первого направления данного уровня.

На локально-детальном уровне [6] реализованы автоматизированная классификация объектов ТрИ и оценка состояния дорожного покрытия с применением гиперспектральных снимков высокого пространственного разрешения. В качестве исходных данных для классификации используются наборы эталонных спектральных сигнатур объектов интереса. Строится соответствующий тематический слой. Результаты интерпретации получаемой информации на каждом из двух уровней записываются в БД. При наличии изменений конфигурации транспортной сети и информации о ее загруженности, зафиксированных в результате сопоставления обработанных данных космической съемки с содержащейся в БД информацией, производится актуализация соответствующих данных [7, 8].

Имманентные свойства объектов ТрИ

Процесс синтеза тематического слоя объектов ТрИ, в основу которого положены подходы к дешифрированию аэрокосмических снимков, требует априорного знания характерных признаков объектов (имманентных свойств) данного тематического слоя.

Целевой объект на снимке может быть распознан по прямым и/или косвенным дешифровочным признакам. К прямым дешифровочным признакам объекта ТрИ отнесем такие, как тон, тень, цвет, размер, форма, текстура, рисунок, местоположение и т.п. К косвенным – связь с другими объектами, а также результат влияния одних объектов на дру- гие, проявляющийся в виде одного или нескольких прямых признаков (например, число полос дороги определяется, исходя из числа рядов автомобилей, дислоцированных по ширине этой дороги). В настоящей работе сосредоточимся на рассмотрении прямых признаков.

Яркостные (спектральные) признаки во многих случаях являются основными и единственными признаками, используемыми при распознавании аэрокосмических изображений. При обработке спектрозональных снимков они наиболее удобны, так как каждая точка просматриваемого изображения получает многомерную числовую характеристику – набор спектральных признаков.

К геометрическим признакам отнесем форму (линейная, плоская, объемная), размер, топологические свойства объектов (связность, число промежутков). Трудная формализация геометрических признаков определяет их более редкое использование по сравнению с яркостными признаками.

Современным, перспективным и наиболее эффективным подходом к автоматизированному дешифрированию аэрокосмических изображений является использование комплексных признаков – специфического сочетания яркостных и геометри- ческих признаков, определяющего структуру (текстуру) изображенных на снимке объектов. Они наиболее эффективны и устойчивы, хотя и трудно формализуемы.

Признаковое описание объектов тематического слоя является важным элементом при разработке и выборе методов и подходов к интерпретации данных пространственно-спектрального куба. Точность модели объектов ТрИ на основе аэрокосмических снимков зависит и от полноты и точности признакового описания этих объектов.

Пусть T – множество объектов участка земной поверхности. Выделим в данном множестве подмножество  объектов ТрИ. Каждый такой объект определяется набором уникальных признаков – имманентных свойств . Признаком будем считать результат измерения некоторой характеристики объекта.

Описанием имманентных свойств объекта  ТрИ является вектор

,                                     (1)

где m – число учитываемых свойств объекта  ТрИ.

Пусть на аэрокосмическом снимке представлено множество объектов ТрИ:

,                                             (2)

где n – число объектов ТрИ, представленных на снимке.

Каждый объект ТрИ , отображаемый на снимке, обладает следующими свойствами:

.                                                    (3)

представляет собой набор спектральных признаков объекта :

,                                             (4)

где m – число спектральных признаков объекта . Каждый пиксель изображения, относящийся к объекту интереса, можно рассматривать как много- мерный спектральный вектор признаков, составленный из набора значений яркости  в каждом из спектральных каналов

,                                    (5)

где r – число спектральных каналов изображения; m – ширина матрицы данных канала  n – высота матрицы данных канала

 представляет собой набор пространственных признаков объекта :

,                                              (6)

где z – число признаков.

Полнота и точность признакового описания объекта ТрИ зависят от степени детализации и мас- штабного уровня представления этого объекта в пространственно-спектральном кубе. Для систематизации процесса целевого использования информации ДЗЗ в рамках рассматриваемой предметной области целесообразно сформулировать систему признаков объектов ТрИ с учетом концепции двухуровневой системы информационной поддержки управления состоянием объектов ТрИ.

Для описания имманентных свойств объектов ТрИ на макроуровне выделены классы Транспортная_сеть и Транспортное_средство. ТрС представляет собой совокупность дорог. Определим имманентные свойства объектов класса Дорога. Объекту класса Дорога в каждом канале пространственно-спектрального куба соответствует прямоугольная область

,                                 (7)

где , ,  – ширина, длина, угол поворота области, соответственно.

Пусть  – множество объектов, не являющихся элементами ТрС, совокупность их областей: . Для объекта класса Дорога определим основные имманентные свойства:

-     значительная протяженность

;                                                    (8)

-     одинаковая ширина на всем протяжении

;                                                         (9)

-     равномерное распределение функции яркости на участке протяжения, означающее, что значение среднеквадратического отклонения  яркости пикселей каждого канала пространственно-спектрального куба, принадлежащих  стремится к нулю:

;                              (10)

-     четкие контуры, то есть модуль градиента Ñf(x, y) функции яркости на границах области  превышает среднее значение градиента  по каждому каналу пространственно-спектрального куба:

;                               (11)

-     отрицательные значения вегетационного индекса NDVI:

.                                           (12)

Для объекта класса Транспортное_средство, ограниченного областью  аналогичным образом определены имманентные свойства.

Описание имманентных свойств объектов ТрИ на локально-детальном уровне выполнено путем рассмотрения класса Дорога с детализацией на классы Проезжая_часть, Обочина, Тротуар, Велосипедная_дорожка, Разделительная_полоса, Разметка, а также путем рассмотрения класса При- родный_объект. Особенностью является наличие спектрального портрета, присущего каждому объекту. В границах области  выделим прямоугольные области объектов классов Проезжая_ часть, Обочина, Тротуар, Велосипедная_дорожка, Разделительная_полоса, Разметка соответственно: , , , , . Для объекта класса Проезжая_часть определим основные свойства:

-     значительная протяженность, рост отражательной способности как функции от длины волны хорошо прослеживается в ближнем и коротковолновом инфракрасных диапазонах при отражательной способности более 10 % (на основе гиперспектральной информации), то есть

,                     (13)

где l1, l2 – длины волн левой и правой границ ближнего инфракрасного диапазона спектра, соответственно; поглощение излучения на длинах волн λ = 520 нм, λ = 670 нм и λ = 870 нм;

-     увеличение отражательной способности для старых дорожных покрытий (с минимальными значениями индекса состояния дорожного покрытия PCI) в диапазоне от 2 100 до 2 200 нм и уменьшение в диапазоне от 2 250 до 2 300 нм, то есть

;

-     высокое значение индекса ARVNIRI: разность отражения на длинах волн λ = 830 нм и λ = 490 нм; низкое значение индекса ARSWIRI: разность отражения для λ = 2120 нм и λ = 2340 нм, для старых покрытий

(14)

где r830, r490, r2120, r2340 – значения отражения на длинах волн λ = 830 нм, λ = 490 нм, λ = 2120 нм, λ = 2340 нм, соответственно.

Для объекта класса Обочина особенностью является условие совпадения одной из сторон наибольшей длины области  с наибольшей длиной области

Синтез тематических слоев ТрИ

Синтез тематического слоя осуществляется за счет обработки исходных данных со страты объектов ТрИ , страты ДЗЗ , преобразованных (оцифрованных) и получивших отображение на страту программных средств обработки этой информации CT. Интерпретация данных осуществляется на уровне страты методической инфраструктуры M с использованием методов обработки информации ДЗЗ CM. Страта методической инфраструктуры наполнена методом синтеза тематического слоя ТрС на основе мультиспектральной космической информации высокого разрешения и методом синтеза тематического слоя объектов ТрИ с использованием гиперспектральных снимков на основе нейросетевого подхода.

В основе метода  синтеза тематического слоя  ТрС на базе космического снимка лежит задача экстрагирования локальных областей  объектов класса Дорога в условиях ограниченного пространства спектральных признаков, при этом

,                                           (15)

                           (16)

для  элементов ТрС в ,

функция учета имманентных свойств класса Дорога.

Метод  представлен последовательностью шагов.

1.    Комплексирование мультиспектрального и панхроматического изображений.

2.    Формирование глобальных целевых сегментов.

3.    Формирование целевых сегментов на основе обнаружения и исключения площадных объектов.

4.    Выделение контуров объектов на панхроматическом изображении.

5.    Выделение точек, обладающих имманентными свойствами элементов ТрС.

6.    Синтез результирующего тематического слоя элементов ТрС.

7.    Скелетизация.

На вход подается космический снимок в виде комплекта, состоящего из панхроматического и спектрозонального изображений. На выходе формируется упрощенная модель ТрС в виде осевых линий. Для формирования глобальных целевых сегментов строится множество кластеров :

                    (17)

включающих в себя целевую область  с множеством признаков .

Исключение площадных объектов осуществляется при пороговых значениях  в квадратной области :

           (18)

Для выделения контуров объектов на изображении используется детектор границ Кэнни. На этапе выделения точек, обладающих имманентными свойствами элементов ТрС, формируется точка (пиксель)  в пределах изображения I . Задается область  с центром в  длиной стороны : , в пределах которой для каждой области  вычисляется значение СКО яркости пикселей, входящих в область, определяется минимальное значение. Для всех возможных областей , образованных пересечением пикселей этих областей линией , выполняется проверка:

.     (19)

Процесс построения результирующего слоя  сегментации целевых областей описан выражением

Скелетизация реализована алгоритмом Зонга–Суня [9].

В основе метода  синтеза слоя динамических объектов ТрИ, то есть определения оценки загруженности ТрС, лежит решение задачи сегментации на снимке объектов класса Транспортное_средство. Реализована процедура автоматического выделения контуров областей  лежащих в границах  на основе оценки изменений значений функции яркости в границах областей панхроматического изображения I, соответствующих областям, сформированным в результате построения тематического слоя  Реализован подход на основе оператора Лапласа. В качестве исходных данных для метода используются маска ТрС, полученная методом , и оперативный снимок территории. Для дальнейшего анализа используется оперативная маска-снимок с фиксированной дорожной ситуацией на момент проведения съемки.

В основе метода  синтеза тематического слоя состояния дорожного покрытия лежит расчет эмпирических соотношений ARVNIRI и ARSWIRI на основе предварительного распознавания объектов класса Проезжая_часть. Модель  процесса определения состояния дорожного покрытия представляет собой матописание процесса построения тематического слоя  состояния дорожного покрытия объектов класса Проезжая_часть на ос- нове исходного гиперспектрального снимка : . Тематический слой  представ- ляет собой пространственное распределение значений атрибута conditionTD объектов класса Проезжая_часть в границах, соответствующих размерам исходного изображения [10].

Метод  синтеза тематического слоя объектов ТрИ с использованием гиперспектральных снимков основан на применении нейросетевых технологий глубинного машинного обучения – сверточных нейронных сетей [11]. Преимуществом распознавания гиперспектральных изображений данной нейросетью является учет как спектральных, так и пространственных признаков объектов, присутствующих на снимке. Для решения рассматриваемой задачи подобрана рациональная архитектура сети, определены характеристики и настраиваемые параметры промежуточных слоев.

Заключение

Описанные подходы и методы нашли применение в информационной системе построения геомодели модели ТрИ на основе данных ДЗЗ на уровне подсистемы обработки данных ДЗЗ и геоинформационной подсистемы. Результаты могут быть использованы для построения интеллектуальных транспортных систем управления функционированием и состоянием ТрИ урбанизированной территории, а также в технологическом цикле тематической обработки информации ДЗЗ.

Литература

1.     Копайгородский А.Н., Массель Л.В. Фрактальный подход к проектированию архитектуры информационных систем // Вестн. ИрГТУ. 2010. № 6. С. 8–12.

2.     Макагонова Н.Н. Методический подход к построению онтологического пространства, основанный на использовании фрактальной стратифицированной модели // Информационные и математические технологии в науке и управлении: тр. XVII Байкальской Всерос. конф. Иркутск: Изд-во ИСЭМ СО РАН, 2012. Т. III. С. 81–86.

3.     Mikheeva T.I., Fedoseev A.A., Mikheev S.V. Remote sensing data analysis via Data Mining for road infrastructure surveying. Proc. Intern. Conf. Information Technologies for Intelligent Decision Making Support, Ufa, Russia, 2013, pp. 73–76.

4.     Михеева Т.И., Федосеев А.А. Автоматизированная идентификация изменений конфигурации дорожной сети на основе материалов космической съемки // Перспективные информационные технологии (ПИТ-2016): тр. Междунар. науч.-технич. конф.; [под ред. С.А. Прохорова]. Самара: Изд-во СамНЦ РАН, 2016. C. 663–667.

5.     Ahmadizadeh S., Yousefi M., Saghafi M. Land use change detection using remote sensing and artificial neural network: Application to Birjand, Iran. Computational Ecology and Software, 2014, vol. 4, no. 4, pp. 276–288.

6.     Михеев С.В., Федосеев А.А., Головнин О.К. Учет мультиколлинеарных атрибутов пространственно-распределенных данных, полученных с беспилотных летательных аппаратов // Изв. Самарского научного центра РАН. 2015. Т. 17. № 2. С. 1053–1057.

7.     Mena J.B. State of the art on automatic road extraction for GIS update: a novel classification. Pattern Recognition Letters. 2003, vol. 24, pp. 3037–3058.

8.     Федосеев А.А., Михеева Т.И., Осьмушин А.А. Актуали- зация данных, представляемых в ITSGIS, на основе гиперспектрального ДЗЗ // Информационные технологии интеллектуаль- ной поддержки принятия решений (ITIDS’2014): тр. II Междунар. конф. Уфа: Изд-во УГАТУ, 2014. С. 135–139.

9.     Zhang T., Suen C., Ching Y. A Fast Parallel Algorithms For Thinning Digital Patterns. Communication of the ACM, 1984, vol. 27, no. 3, pp. 236–239.

10.   Михеева Т.И., Федосеев А.А. Методы обработки гиперспектральных данных дистанционного зондирования при реше- нии задач мониторинга объектов транспортной инфраструк- туры // Перспективные информационные технологии (ПИТ-2014): тр. Междунар. науч.-технич. конф.; [под ред. С.А. Прохорова]. Самара: Изд-во СамНЦ РАН, 2014. C. 391–395.

11.   Fedoseev A., Saprykin O., Mikheeva T. Recognition of urban transport infrastructure objects via hyperspectral images. Proc. Intern. Conf. on Vehicle Technology and Intelligent Transport Systems (VEHITS 2016). Rome, Italy, SCITEPRESS, 2016, pp. 203–208.



http://swsys.ru/index.php?id=4393&lang=%2C&page=article


Perhaps, you might be interested in the following articles of similar topics: