ISSN 0236-235X (P)
ISSN 2311-2735 (E)
3

13 Сентября 2024

Алгоритм и программная реализация поиска отклонений значений параметров от норм промышленного оборудования

DOI:10.15827/0236-235X.129.091-095
Дата подачи статьи: 14.09.2019
УДК: 004.32+004.65

Колоденкова А.Е. (anna82_42@mail.ru) - Самарский государственный технический университет (доцент, зав. кафедрой «Информационные технологии»), Самара,, Россия, доктор технических наук, Верещагина С.С. (werechaginass@mail.ru) - Самарский государственный технический университет (старший преподаватель кафедры «Информационные технологии»), Самара,, Россия
Ключевые слова: промышленное оборудование, алгоритм поиска отклонений значений параметров, база данных, программная реализация
Keywords: industrial equipment, algorithm for searching parameter values deviations, database, program realization


     

Отказы оборудования всех отраслей промышленности, возникающие на этапе эксплуатации в силу износа и старения, могут стать источником тяжелых повреждений самого оборудования, а также аварийных и чрезвычайных ситуаций, сопровождающихся значительным экономическим ущербом [1–3]. Для повышения производительности функционирования и уровня отказоустойчивости оборудования, предупреждения и уменьшения возможности отказов и аварий необходимо осуществлять поиск и диагностирование неисправностей оборудования с использованием современных интеллектуальных технологий и методов, позволяющих учесть основные факторы, влияющие на оборудование, многофакторность данного процесса, слабую структурированность теоретических и фактических знаний об оборудова- нии, неполноту исходных данных [4, 5]. Таким образом, поиск и диагностирование неисправностей оборудования на этапе эксплуатации является весьма актуальной задачей.

Настоящая работа посвящена одной из труднорешаемых задач, требующих высокой квалификации дежурного персонала: поиску отклонений значений параметров промышленного оборудования от норм, направленному на повышение обоснованности и своевременности принимаемых решений, а также на дальнейшее диагностирование и прогнозирование технического состояния оборудования.

Алгоритм поиска отклонений значений параметров промышленного оборудования

Представим обобщенную схему поиска отклонений значений параметров промышленного оборудования с использованием БД и БЗ.

На первом этапе осуществляются сбор данных (коэффициент временного перенапряжения, гармоники тока, тепловизионная съемка и другие) с множества приборов, а также сохранение этих данных в формат Excel (*.xls) для дальнейшей обработки [6].

 

Рис. 1. Алгоритм поиска отклонений значений параметров 
 оборудования с использованием БД

Fig. 1. The algorithm for searching the parameter values devia-tions 
in the equipment using a database
На втором этапе выбираются параметры оборудования, которые необходимо отследить за все время эксплуатации.

На третьем и четвертом этапах проверяются значения параметров оборудования на соответствие паспортным данным, ГОСТам, нормативной документации, хранящимся в БД. Алгоритм поиска отклонений значений параметров промышленного оборудования от норм с использованием БД подробно рассмотрен далее.

На пятом этапе проверяются значения параметров оборудования на соответствие знаниям экспертов, хранящимся в БЗ. Поскольку ГОСТ регламентирует отклонения значений параметров, но не указывает причины их возникновения, используется опыт дежурного персонала. БЗ хранит ответы на вопрос, почему происходит отклонение конкретного параметра от нормального значения. Исходя из того, что на промышленных предприятиях используется аналогичное оборудование и причины отклонений, как правило, совпадают, целесообразно использовать опыт дежурного персонала при анализе причин отклонений параметров и давать рекомендации, например, по внеплановому осмотру оборудования на поиск неисправностей.

На шестом этапе осуществляется построение прогноз- ных моделей с использованием методов мягких вычислений и методологии нечеткого когнитивного моделирования [7].

На рисунке 1 представлен алгоритм поиска отклонений значений параметров промышленного оборудования от норм с использованием БД. Здесь tдов. и tпред. – суммарное время выхода значения параметра оборудования за пределы доверительного и предельного интервалов; ∆t – период времени между считыванием значений параметра с прибора, которое составляет 3 сек. Отметим, что границы доверительного и предельного интервалов для каждого параметра определены в нормативной документации, в частности, в ГОСТ 11677-85, где предписано, что дежурному персоналу необходимо учитывать суммарное время отклонения значения параметра, если оно превышает 1 минуту.

На рисунке 2 показана инфологическая модель БД, представляющая собой описание сущностей, с набором атрибутов и связей между ними, которые выявляются в процессе исследования как входных, так и выходных данных [8].

На рисунке 3 изображена даталогическая модель БД, отображающая логические связи между элементами данных независимо от их содержания и среды хранения [9].

Отметим, что даталогическая модель БД разрабатывалась с учетом специфики конкретной предметной области на основе ее инфологической модели.

Пример поиска отклонений значений параметра электротехнического оборудования нефтяного предприятия

Рассмотрим поиск отклонений значений параметра напряжения, которое подавалось на подстанцию по низкой стороне, с использованием разработанной программной системы, реализующей предложенный алгоритм. Для реализации программной системы был выбран объектно-ориентированный язык программирования C#, поскольку он имеет статическую типизацию, поддерживает полиморфизм, перегрузку операторов, анонимные функции с поддержкой замыканий, LINQ, исключения, комментарии в формате XML. Для хранения паспортных данных на оборудование, ГОСТов и нормативной документации была спроектирована БД с использованием Microsoft SQL Server Management Studio.

На рисунке показаны интерфейсы ввода исходных данных (см. http://www. swsys.ru/uploaded/image/2020-1/2020-1-dop/12.jpg).

Из рисунка видно, что может осуществляться поиск отклонений значений параметра не только напряжения, но и силы, и гармоники тока. Справочник необходим для хранения значений интервалов параметров различного вида электротехнического оборудования.

Отчет о результатах поиска выглядит следующим образом.

Отклонения по напряжениям

Ua Доверительный интервал

Дата 20.09.2018 время 0:40.

Продолжительность: 120 мин.

Среднее число 5,9.

Предельно допустимый интервал

Дата 20.09.2018 время 0:40.

Продолжительность: 120 мин.

Среднее число 5,9.

Ub Доверительный интервал

Дата 20.09.2018 время 0:40.

Продолжительность: 120 мин.

Среднее число 6,19.

Предельно допустимый интервал

Дата 20.09.2018 время 0:40.

Продолжительность: 120 мин.

Среднее число 6,19.

Uc Доверительный интервал

Дата 20.09.2018 время 0:40.

Продолжительность: 120 мин.

Среднее число 4,92.

Предельно допустимый интервал

Дата 20.09.2018 время 0:40.

Продолжительность: 120 мин.

Среднее число 4,92.

Здесь под продолжительностью понимается время отклонения, под средним числом – среднее отклонение напряжения.

Заключение

Авторами предложен алгоритм поиска отклонений значений параметров промышленного оборудования от норм с целью дальнейшего диагностирования оборудования на этапе эксплуатации. Данный алгоритм не только позволяет ответить на вопрос, в какое время возникло отклонение значения параметра, но и дает возможность определить продолжительность отклонения и среднее значение отклонения параметра. Разработанная программная система, реализующая предложенный алгоритм, позволяет дежурному персоналу не обращаться постоянно к паспортным данным на оборудование, ГОСТам и нормативной документации, представленной в бумажном виде, отказаться от перебора всевозможных причин при поиске, устранить необоснованные ремонты оборудования. Дальнейшие исследования авторов будут направлены на разработку этапа проверки значений параметров оборудования на соответствие знаниям дежурного персонала.

Работа выполнена при поддержке РФФИ, проект № 19-08-00152.

Литература

1.        Хорошев Н.И., Елтышев Д.К. Интегральная оценка и прогнозирование технического состояния оборудования электротехнических комплексов // Информатика и системы управления. 2016. № 4. С. 58–68. DOI: 10.22250/isu.2016.50.58-68.

2.        Yan Y. Research on electrical equipment’s fault diagnosis based on the improved support vector machine and fuzzy clustering. Chemical Engineering Transactions, 2017, vol. 59, pp. 865–870.

3.        Саушев А.В., Шерстнев Д.А., Широков Н.В. Анализ методов диагностики аппаратов высокого напряжения // Вестн. ГУМРФ. 2017. Т. 9. № 5. С. 1073–1085. DOI: 10.21821/2309-5180-2017-9-5-1073-1085.

4.        Перфильев О.В., Рыжаков С.Г., Должиков В.А. Интеллектуальная система поиска неисправности на самолете // Изв. СамНЦ РАН. 2018. № 4. С. 326–331.

5.        Андриевский-Герберг С.Н., Новосельцев В.В. Разработка интерактивной системы поиска и устранения неисправностей двигателей семейства ЯМЗ-530 // Инженерный журнал: наука и инновации. 2015. Т. 9. С. 1–11.

6.        Колоденкова А.Е., Верещагина С.С., Мунтян Е.Р. Разработка единой интеллектуальной системы поддержки принятия решений для диагностирования электротехнического оборудования промышленности // Труды XIII ВСПУ. 2019. С. 1–5.

7.        Колоденкова А.Е., Верещагина С.С. Интеллектуальный метод прогнозирования технического состояния электротехнического оборудования в условиях нечеткости исходных данных // Вестн. РГУПС. 2019. № 1. С. 76–81.

8.        Павленко В.И., Баташова А.Ф., Беленченко В.М., Игнатенко С.П. Информационные технологии в экономике. Создание базы данных. Новочеркасск: Изд-во ЮРГТУ, 2006. 83 с.

9.        Кириллов В.В., Громов Г.Ю. Введение в реляционные базы данных. СПб: БХВ-Петербург, 2009. 464 с.

References

  1. Khoroshev N.I., Eltyshev D.K. Integral assessment and forecasting of the technical condition of electrotechnical complexes equipment. Information Science and Control Systems. 2016, no. 4, pp. 58–68. DOI: 10.22250/isu.2016.50.58-68.
  2. Yan Y. Research on electrical equipment’s fault diagnosis based on the improved support vector machine and fuzzy clustering. Chemical Engineering Transactions. 2017, vol. 59, pp. 865–870.
  3. Saushev A.V., Sherstnev D.A., Shirokov N.V. Analysis of methods of diagnostics of high voltage apparatus. Vestn. Gos. Univ. Morskogo i Rechnogo Flota im. Admirala S.O. Makarova. 2017, vol. 9, no. 5,
    pp. 1073–1085. DOI: 10.21821/2309-5180-2017-9-5-1073-1085 (in Russ.).
  4. Perfilev O.V., Ryzhakov S.G., Dolzhikov V.A. Intelligent airplane troubleshooting. Izv. of RAS SamSC. 2018, no. 4, pp. 326–331 (in Russ.).
  5. Andrievsky-Gerberg S.N., Novoseltsev V.V. The development of an interactive system for troubleshooting engines of the YMZ-530 family. Eng. J.: Science and Innovation. 2015, vol. 9, pp. 1–11 (in Russ.).
  6. Kolodenkova A.E., Vereshchagina S.S., Muntyan E.R. Development of an intelligent decision support system for the diagnosis of electrical equipment industry. Proc. XIII All-Russian Meeting on Management Issues. Moscow, IPU RAN Publ., 2019, pp. 1–5 (in Russ.).
  7. Kolodenkova A.E., Vereshchagina S.S. Intelligent method for forecasting of electrical equipment technical condition in illegibility of basic data. Bull. RGUPS. 2019, no. 1, pp. 76–81 (in Russ.).
  8. Pavlenko V.I., Batashova A.F., Belenchenko V.M., Ignatenko S.P. Information Technology in Economics. Database Creation. Novocherkassk, SRSPU Publ., 2006, 83 p. (in Russ.).
  9. Kirillov V.V., Gromov G.Yu. Introduction to Relational Databases. St. Petersburg, BHV-Petersburg, 2009, 464 p. (in Russ.).


http://swsys.ru/index.php?id=4682&lang=%E2%8C%A9%3Den&like=1&page=article


Perhaps, you might be interested in the following articles of similar topics: