Авторитетность издания
Добавить в закладки
Следующий номер на сайте
В Казанском государственном техническом университете им. А.Н. Туполева предложено решение задачи выбора доминантных признаков для формирования обучающей выборки нейронной сети
08.10.2009Генетические алгоритмы (ГА) относятся к классу методов случайного направленного поиска. Но в отличие от простого случайного поиска они основаны на принципах, заимствованных у природы, – генетической наследственности и естественного отбора.
Основная идея ГА – создание популяции особей, каждая из которых представлена в виде хромосомы. Любая хромосома – возможное решение рассматриваемой оптимизационной задачи. Для поиска лучших решений необходимо только значение целевой функции, или функции приспособленности особи, которая показывает, насколько хорошо подходит особь, описанная данной хромосомой, для решения задачи.
Хромосома состоит из конечного числа генов – что является генотипом объекта, то есть совокупностью его наследственных признаков. Эволюционный поиск ведется только на уровне генотипа. К популяции применяются основные биологические операторы: скрещивание, мутация, инверсия и др. Популяция постоянно обновляется при помощи генерации новых особей и уничтожения старых, каждая новая популяция становится лучше и зависит только от предыдущей.
Основное отличие ГА от традиционных методов поиска оптимумов состоит в том, что он с каждой эпохой улучшает оптимальное решение, но не гарантирует нахождение лучшего за конечный промежуток времени.
При применении ГА особое место занимает этап подготовки данных, от которого в наибольшей степени зависит успех работы алгоритма. Необходимость подготовки обусловлена тем, что выборка данных часто содержит случайные «выбросы», нетипичные и пропущенные значения, возможные ошибки ввода и т.д.
Подробное описание дается в статье «Генетический алгоритм выбора доминантных признаков для нейронной сети», автор Нигматуллина А.Н. (Казанский государственный технический университет им. А.Н. Туполева).