Горитов А.Н. () - | |
Ключевое слово: |
|
Ключевое слово: |
|
|
Программное обеспечение робототехнических комплексов (РТК) должно обеспечивать синтез законов управления и анализ кинематики и динамики РТК для оптимального и безопасного функционирования РТК при выполнении заданных технологических операций в произвольных рабочих средах, для создания удобных средств отображения результатов синтеза, анализа и моделирования РТК. В соответствии с этим можно сформулировать основные задачи, которые должна решать система автоматизированного моделирования и проектирования, а именно: · синтез исполнительного механизма РТК; · прямая и обратная задачи кинематики; · прямая и обратная задачи динамики; · планирование выполнения технологических операций; · синтез законов управления (как для транспортных операций, так и для контурного управления); · анализ пространственного расположения робота во время функционирования по заданному или синтезированному закону управления.
Система автоматизированного моделирования предназначена для исследования РТК без проведения натурных экспериментов и изготовления прототипа разрабатываемого устройства. Система моделирования позволяет синтезировать законы управления манипуляторами, вычислять геометрию манипуляторов в процессе выполнения рабочих операций, определять точки столкновений в процессе функционирования механизмов, решать прямую и обратную задачи кинематики, выполнять расчет динамики движения исследуемого механического устройства. Общение пользователя с системой моделирования выполняется в диалоговом режиме. Дружественный графический интерфейс сопровождает весь процесс решения задачи. Методологические основы, на которых базируется система моделирования, рассмотрены в [1]. Данный подход позволяет создать программный продукт, способной исследовать РТК с произвольной конструкцией исполнительного механизма. Обобщенная структура системы автоматизированного моделирования РТК приведена на рисунке 2. Система организована по модульному принципу. Ее можно представить как управляющее ядро системы, взаимодействующее с модулями системы моделирования. По функциональному признаку в системе моделирования можно выделить пять основных блоков: управляющий, входной информации, вычислительный, информационный, выходной информации. Управляющий блок организует работу всей системы моделирования и обеспечивает контроль процесса обработки информации на различных этапах технологической цепочки решения задач. Блок включает в себя два модуля – управляющий и сервисный, обеспечивающие диалоговое взаимодействие пользователя с системой моделирования. Управляющий модуль обеспечивает связь всех модулей системы моделирования и выполняет общее управление процессом решения задачи.
Блок входной информации обеспечивает формирование задания на моделирование, которое состоит из описания моделируемого объекта, рабочей сцены и параметров моделирования. Блок позволяет работать как с новыми, так и с ранее созданными задачами. Для этого используются модуль ввода-вывода и графический редактор. Модуль ввода-вывода осуществляет выполнение операции чтения из файла задачи, сохранение задачи в файле и создание новой задачи, а графический редактор – ввод и редактирование моделируемого объекта и его рабочего пространства на основе формализованного представления рабочего пространства и РТК [2]. Вычислительный блок включает в себя ряд модулей, которые реализуют автоматическое формирование математической модели исследуемого объекта и его рабочего пространства, синтезируют законы управления УМС и выполняют геометрические, кинематические и динамические расчеты. Программы вычислительного блока используются моделями компонентов и управляющей программой. Рассмотрим кратко перечисленные модули. Модуль формирования модели совместно с библиотекой моделей компонентов формирует математическую модель, вычисляет матрицы преобразования между системами координат смежных компонентов, а также матрицы преобразования между связанными системами координат компонентов и неподвижной системой координат. Модуль геометрических расчетов обеспечивает расчет пространственного положения моделируемого механизма и анализ пространственного расположения исследуемого механизма на “геометрическое противоречие” [3]. Позволяет решать такие задачи, как размещение геометрических объектов в пространстве с ограничениями, анализ функционирования манипуляторов, анализ столкновений управляемых механизмов с объектами рабочей сцены, проверку принадлежности точек траектории движения рабочих органов их сервисной зоне обслуживания. Модуль кинематических расчетов выполняет расчет координат, скоростей и ускорений центра масс компонентов, деталей и изделий в целом. Позволяет решать такие задачи, как определение скорости и ускорения отдельных составляющих исследуемого устройства, а также произвольно заданной точки, вычисление усилий, которые возникают в кинематических узлах манипулятора в процессе выполнения запланированных действий, определение центра масс отдельных компонент или деталей, а также всего изделия в целом в процессе его функционирования. Модуль динамических расчетов позволяет определить влияние инерционности, упругости, а также сил трения на динамические процессы в приводах манипуляторов на процессы перемещения, скорости и ускорения звеньев кинематической цепи. Модуль синтеза законов управления обеспечивает построение плана траектории перемещения рабочего органа РТК с учетом обхода препятствий, находящихся на рабочем пространстве, а также синтезирует законы управления каждым приводом манипулятора. Модуль включает в себя различные алгоритмы построения плана траектории. Конкретный же алгоритм построения выбирается инженером-исследователем непосредственно перед вычислительным экспериментом. В процессе решения задачи планирования решаются прямая или обратная задачи пространственного расположения моделируемого механизма. Для построения законов управления используются методы полиномиальной и сплайновой аппроксимации. Информационный блок содержит модуль объяснения и программы выдачи сообщений об ошибках и о геометрическом противоречии. Модуль объяснения позволяет ответить на вопросы как и почему получен такой результат. В блок выходной информации входят программы формирования трехмерного изображения рабочей сцены и исследуемого объекта, графического отображения контролируемых параметров исследуемого объекта, сопряжения с РТК и сопряжения с внешними САПР. Модуль визуализации трехмерных рабочих сцен обеспечивает формирование на экране дисплея графического образа моделируемого объекта и его рабочей сцены. На экране монитора формируется графическая имитация движения РТК в заданной рабочей среде. Визуальное представление трехмерных рабочих сцен обеспечивается различными режимами визуализации – каркасное представление с сохранением всех линий, каркасное представление с удалением невидимых линий без закраски граней, удаление невидимых линий с закраской и бесконечно удаленным источником света. Предусмотрены непрерывный и покадровый режим вывода изображения на экран монитора. Оперативное изменение параметров визуализации (например, масштаба изображения, направления взгляда, способа построения изображения) обеспечивает инженера-исследователя удобным инструментом для визуальной оценки результатов моделирования управляемой механической системы. Модуль графического отображения контролируемых параметров выполняет отображение траектории, скорости и ускорения перемещения центра масс деталей в рабочем пространстве, а также управляющих функций приводами манипулятора в виде графиков. Модуль сопряжения с РТК позволяет преобразовать синтезированные законы управления РТК, сформированные системой моделирования, в систему команд заданного манипулятора. Модуль сопряжения с внешними САПР обеспечивает конвертирование данных из внутреннего формата системы моделирования в формат DXF. Конвертирование производится в трехмерный образ рабочей сцены или в проекции, которые в дальнейшем используются при создании чертежной документации. Библиотека моделей компонентов является важной составной частью системы моделирования, которая включает: · трехмерные твердотельные примитивы; · кинематические узлы (линейное перемещение и вращение) с ограничениями и без них; · модели динамических компонентов; · модели источников; · источники заданного движения; · источники идеальной скорости; · модели измерителей. Для описания широкого класса РТК достаточно использовать небольшой набор моделей твердотельных компонентов, так называемый базисный набор моделей компонентов, который включает в себя параллелепипед, цилиндр, конус, усеченный конус, шар, цилиндр с осевым отверстием [4]. Модели компонентов работают в постоянном взаимодействии с вычислительными модулями системы. Разработанная система моделирования позволяет эффективно решать многие задачи, связанные с контролем на отсутствие столкновений элементов механической конструкции в процессе ее функционирования, движения при заданных пространственных ограничениях, с проверкой на выполнение условий собираемости, поиск оптимальных компоновочных решений, на планирование траектории перемещения рабочего органа манипулятора и на расчет кинематики движения исследуемого механического устройства. Система моделирования реализована на объектно-ориентированном языке программирования Object Pascal 2 в среде Delphi и предназначена для работы на IBM-совместимых компьютерах под управлением Windows 95/98, NT. Список литературы 1. Горитов А.Н., Дмитриев В.М. Анализ управляемых механических систем с геометрической интерпретацией рабочего пространства. Геометрический и кинематический анализ. - Томск: Изд-во ТУСУР, 1998. - 120 с. 2. Горитов А.Н. Имитационное моделирование управляемой механической системы и ее рабочего пространства. // Приборы и системы. Управление, контроль, диагностика. - 2000. - № 5. - С. 11-13. 3. Горитов А.Н. Геометрический анализ механизмов и управляемых механических систем. // Приборы и системы. Управление, контроль, диагностика. - 2000. - № 10. - С. 19-22. 4. Горитов А.Н. Система автоматизированного моделирования ДЕЙМОС. // Докл. ТУСУР. Сб. науч. тр. - Т. 2: Автоматизированные системы управления. - Томск: Изд-во ТУСУР, 1999. - С. 196-203. |
http://swsys.ru/index.php?id=825&lang=.docs&page=article |
|