Авторитетность издания
Добавить в закладки
Следующий номер на сайте
ДИН - экспертная диагностическая система по неотложным состояниям
Аннотация:
Abstract:
Авторы: Таперова Л.Н. () - , Кобринский Б.А. (kba_05@mail.ru ) - Федеральный исследовательский центр «Информатика и управление» РАН, Российский национальный исследовательский медицинский университет им. Н.И. Пирогова (профессор, зав. лабораторией), Москва, Россия, доктор медицинских наук, Веприцкая В. () - | |
Ключевое слово: |
|
Ключевое слово: |
|
Количество просмотров: 16160 |
Версия для печати |
Использование технологии экспертных систем (ЭС) в медицине основано на том, что она позволяет строить системы, которые могут содержать знания о патогенезе заболеваний, осуществлять поиск ведущих синдромов среди любого количества состояний при учете степени их выраженности, соподчиненности и взаимовлияния. Одновременно система предоставляет врачу возможность получения пояснений по поводу своей "логики" в процессе постановки диагноза. Практически важный аспект при использовании ЭС - это то, что диагностика может проводиться по неполному списку диагностических критериев, т.е. при стертой клинической картине, неполностью развившемся синдроме и при ограничениях на проведение лабораторных и функциональных исследований. С целью повышения качества диагностики и эффективности лечения критических состояний у детей в Московском НИИ педиатрии и детской хирургии создана экспертная система ДИН, ориентированная на решение задачи распознавания неотложного состояния у детей в терминах синдрома или нескольких синдромов (точнее, характеризующих их состояний, которые отражают степень выраженности синдрома) при предъявлении признаков заболеваний, под которыми следует понимать анамнестические, клинические и лабораторные проявления. База знаний ЭС содержит описания 34 синдромов, которые включают 84 состояния. Для системы это список диагностических предположений-гипотез. База экспертных знаний врача-реаниматолога содержит более 1000 диагностических критериев и заключений о динамике развития неотложного состояния. С целью ускорения работы системы, ориентированной на угрожающие жизни состояния, все множество синдромов подразделено нами на 14 групп в соответствии с преобладающими нарушениями со стороны той или иной системы жизнеобеспечения, и каждая группа имеет свои дифференцирующие симптомы. Знания о синдромах представлены таким образом, что охватывают: -условие выдвижения гипотезы о возможности возникновения синдрома, которое является некоторой логической комбинацией симптомов; -клиническую картину, то есть симптомы заболевания; - необходимые и достаточные условия для подтверждения гипотезы; -информацию о дополнительных синдромах, состоящих в некоторых отношениях с рассматриваемым: 1) причинно-следственные связи, предполагающие информацию о синдромах, которые могут быть причиной данного синдрома или, наоборот, являться его следствием; 2) временные связи, позволяющие как прогнозировать состояние ребенка, так и восстанавли вать возможный анамнез болезни; 3) ассо циативные связи, дающие возможность учитывать, на фоне каких состояний может развиться данный синдром, фоном для каких синдромо! он может служить и с какими синдромами ш может быть совместим, то есть какие синдрош могут встречаться одновременно; - информацию о состояниях, взаимоисклю чающих друг друга; - сведения о дифференцируемых синдрома! (синдромах-конкурентах). Все знания о синдромах подразделяются ш декларативные - для описания самого синдром! (клиническая картина, дополнительные синдромы) - и процедурные, указывающие на то, как использовать знания в процессе диагностики, Функциональная схема ДИН соответствуй схеме классической ЭС: интерфейс, блок представления знаний, блок метазнаний, блок механизма логического вывода, блок рабочей облас ти, блок пополнения и модернизации знанй Все компоненты ДИН взаимодействуют в рам ках системы-оболочки LEONARDO и описаны исходя из возможностей ее внутреннего языка. Блок представления знаний содержит мод» ли знаний и фактографические данные. Бли данных включает в себя сведения о признащ которые, с одной стороны, конкретизирукш по области их возможных и нормальных значс ний, с другой - характеризуются либо как и чественные, либо как количественные. В эта же блок входит и так называемый архив, соде} жащий персонифицированную информацию! больных детях. В архиве специально выделят ся больные, у которых неправильный диага был поставлен врачом или системой, с тем, чт: бы пользователь мог проанализировать эти а туации - причины ошибок при постановке д агноза. Модели знаний выполняют функцию опр деления взаимоотношений между элементам данных, хранящихся в фактографической ба данных. С целью сокращения процедуры пр смотра блока моделей знаний используются ы тазнания, служащие для объяснения того, ki использовать информацию блока представл Все фактографические данные, то есть симптомы и признаки, представляют структуру, включающую имя данного, его свойства, значения, область нормальных значений, область возможных значений. Для каждого обследуемого ребенка данные организуются в историю болезни, которая содержит 87 имен признаков, включающих 292 симптома и упорядоченных по соответствующим физиологическим системам согласно типовой схеме осмотра больного врачом-реаниматологом. Ввод данных организован так, что на вход подается лишь необходимый минимум информации о ребенке. Остальная информация дополняется благодаря многоуровневой иерархической структуре представления знаний о неотложном состоянии. Архив формируется в виде списка историй болезни с метками, характеризующими различные параметры. Наибольший объем информации заложен в моделях знаний. Инструментальное средство LEONARDO позволяет осуществить представление знаний фреймовым и продукционным формализмом. В системе ДИН каждый объект иерархической структуры описания предметной области представлен фреймом. Фрейм имеет имя и состоит из набора позиций (слотов), которые содержат значения различных свойств, логические и семантические отношения, то есть декларативные и процедурные знания. Информация, заключенная во фрейме, разбита на классы в зависимости от ее характера и участия в процессе принятия решения. В структуру фрейма входит также продукционная сеть - Rule set, позволяющая сократить общую сеть продукций, в которую мы помещаем только правила, имеющие в правой части конечный объект диагностики - состояние ребенка. Управлять фреймами можно внутри самого фрейма, с помощью Rule set и спецификации типов фреймов, а также во внешней сети правил. Модель предметной области и процесса принятия решения представляет собой модель ситуационного управления, в основе которой лежат сценарии, работающие на фреймово-про-дукционном формализме представления знаний. Как было отмечено, для удобства и быстроты поиска все число гипотез-синдромов объединено в группы, каждая из которых так же, как и отдельный синдром, имеет дифференциальную симптоматику, записанную как условие выдвижения гипотезы о группе. Все дальнейшие уровни в пространстве состояний строятся на других перечисленных отношениях (группа-синдром, синдром-симптом, признак-симптом). Средством воспроизведения логики врача-реаниматолога при принятии решения в системе является механизм логического вывода. Исходя из принципов построения систем искусственного интеллекта, построение плана для принятия решения производится в пространстве состояний, т.е. каждое одноразовое решение переводит систему из одного состояния в другое. Таким образом, планом является траектория в пространстве состояний. Добавим также, что само пространство состояний является многоуровневым. Многоуровневость пространства состояний обусловливается выбором сценария, а также стратегией встречной волны. Механизм логического вывода построен на основе смешанной стратегии - прямой и обратной, что предполагает вначале ввод в систему параметров состояния ребенка, которое необходимо диагностировать. Процесс последовательного сканирования блока моделей знаний продолжается до тех пор, пока там не будет найдено правило, условие которого совпадает с введенной информацией. В данном случае контроль процесса поиска решения осуществляется вводимыми параметрами. После того, как в рабочей области системы собраны все сведения, требующие анализа, блок механизма логического вывода рассматривает каждый из них поочередно (или в какой-то иной последовательности, в соответствии с указанием метазнаний), пытаясь прийти к определенному выводу. При обратной стратегии процесс рассуждений идет от гипотетического решения к фактам, которые могут послужить основой для такого решения. В некоторых ситуациях возможно обратное переключение стратегий. В режиме обратной стратегии гипотеза либо подтверждается, либо отвергается. Обратная стратегия поддерживается тактикой, основанной или на категориальных проявлениях состояния ребенка (необходимые и достаточные условия), которые в некоторых случаях нет возможности выделить, или на количественной оценке правдоподобия различных гипотез по этим проявлениям. В системе по возможности используются категориальные проявления. Но даже там, где они выделены, осуществляется также попытка использования байесовского подхода к оценке правдоподобия. Наряду с этим используются так называемые уровни уверенности, которые сопровождают каждую продукцию в сети правил. Начальный уровень пространства состояний для удобства и быстроты поиска формируется на основе отношения группа-синдром. Все дальнейшие уровни в пространстве состояний строятся на других перечисленных отношениях в соответствии с прямым и обратным выводом. На первом же уровне мы используем последовательное сканирование, которое подразумевает перебор всех групп, выстроенных нами в порядке возрастания угрозы для жизни ребенка, до тех пор, пока не будет найдена группа, удовлетворяющая условию выдвижения гипотезы о ней. На том же уровне мы начинаем использовать стратегию встречной волны, прямой ее проход, т.е. на вход подается первая порция информации о ребенке, на основании которой система осуществляет выбор соответствующей группы. Следующая порция информации о ребенке используется для того, чтобы внутри этой группы выдвинуть гипотезу о синдроме, при этом данные в алгоритме связаны между собой логическими отношениями и представляют логическое выражение. После выдвижения гипотезы (с определенной вероятностью по Байесу) следует ее подтвердить. Здесь мы уже имеем дело с обратной волной, т.е. исходим из синдрома, а не из данных. Подтвердив синдром, система переходит к следующему уровню - выдвижению гипотезы о состоянии, после чего на следующем уровне эта гипотеза должна быть подтверждена или отвергнута. Так система приходит к цели - состоянию ребенка. По мере продвижения в глубину - к объекту-состоянию, система осуществляет и дополнительную стратегию в ширину, то есть используются дополнительные связи рабочего синдрома с другими синдромами, а также понятие маски (логическое выражение, состоящее из всех теоретически возможных клинических проявлений синдрома, - часто встречающихся, редко встречающихся и т.д.). По дополнительным связям активизируются и принимаются во внимание синдромы, связанные с рассматриваемыми причинно-следственными отношениями. По маске работа ведется в двух противоположных направлениях: 1) по проявлениям, зафиксированным в маске, но отсутствующим у ребенка; 2) по проявлениям, отмеченным у ребенка, но t зафиксированным в маске. В первом случае, если пользователя не раивает надежность полученного диагноза, может попытаться уточнить отсутствуюп данные и получить на основании ответа на i более надежный вывод. Во втором случк ,: "лишним" для данного синдрома симптома) есть возможность выйти на другие синдром,! описании которых полученные данные играА известную роль. » Режим объяснения в рамках системы лочки LEONARDO организован несколько способами: во-первых, это заранее заготшыа ные объяснения (например сообщения об ошЛ ках); во-вторых, это релятивные объяснение г есть протокол, когда каждый шаг програ: •,: снабжается пояснением о том, что в дан.чо случае она делает и с какой целью, а затем уг по ассоциативному дереву, строится объяснен! метода решения проблемы; в-третьих, в пользуется также специальная контролирч щая программа, отслеживающая действия а темы и в случае необходимости выдающая в яснение пользователю. Знания в системе модифицируются доо точно просто благодаря удобному доступу ш к каждому отдельному правилу, так и к фрв мам. Кроме того, текст сети правил удобно щ сматривать, так как оболочка позволяет що тифицировать каждую группу продукций. Система ДИН реализована на внутренв языке LEONARDO для IBM-совместимого щ сонального компьютера и продолжает ран ваться. Так, разработана система лекарстм ной терапии при неотложных состояниях yj тей (LEKATER); АРМ врача-реаниматоля объединяющее функции диагностические,; тактике ведения больного ребенка, а также! хивирование. Разрабатывается система проп зирования развития осложнений при неотл ных состояниях у детей. |
Постоянный адрес статьи: http://swsys.ru/index.php?page=article&id=1101 |
Версия для печати |
Статья опубликована в выпуске журнала № 1 за 1995 год. |
Возможно, Вас заинтересуют следующие статьи схожих тематик:
- Потоковый анализ программ, управляемый знаниями
- Гибридный нейросетевой алгоритм построения аппроксимационных моделей сложных систем
- К вопросу об информатизации
- Подход к выбору оптимального маршрута при перевозке крупногабаритных грузов на основе нейросетевых технологий
- Методы восстановления пропусков в массивах данных
Назад, к списку статей