Авторитетность издания
Добавить в закладки
Следующий номер на сайте
Исследование характеристик пакетных сетей узловым методом тензорного анализа
Аннотация:Представлены результаты разработки программной системы для определения вероятностно-временных характеристик пакетных сетей узловым методом тензорного анализа. Разработанная программа определяет загрузку узлов сетей тензорным методом с целью использования полученных результатов для нахождения исследуемых параметров систем: длины очередей, времени задержки в ветвях, вероятности переполнения и стационарных вероятностей состояний для каждой системы.
Abstract:There is presents results of program system engineering for packet networks probability-time characteristics estimation with using “nodal” method of tensor analysis. Developed program compute network nodes utilization with tensor method for the purpose of using derived results for determination of systems parameters: queue lengths, systems delay time, overflow and stationary probabilities for every of systems.
Авторы: Пономарев Д.Ю. (dupon777@mail.ru) - Сибирский федеральный университет, г. Красноярск, кандидат технических наук | |
Ключевые слова: тензорный анализ сетей, система массового обслуживания, вероятностно-временные характеристики, пакетная сеть |
|
Keywords: tensor analysis of networks, queuing systems, probability-time characteristics, packet network |
|
Количество просмотров: 14771 |
Версия для печати Выпуск в формате PDF (4.85Мб) |
С момента появления сети Арпанет (ARPANET) оценка вероятностно-временных характеристик (ВВХ) является одной из основных задач эксплуатации пакетных сетей и с развитием технологий сетей передачи данных остается актуальной [1]. Исследование ВВХ сети основано на базе IP (Internet Protocol). Это одна из задач развития современных инфокоммуникационных сетей, так как именно данные характеристики позволяют оценить качество обслуживания (QoS – Quality of Service) информационных потоков в сетях. Исследуемыми параметрами при этом являются вероятность потери пакета и занятости мест ожидания в запоминающих устройствах, среднее время задержки пакета в системе, дисперсия времени задержки пакета [2]. Данные характеристики позволяют задать определенный уровень обслуживания для различных видов информационных потоков с целью обеспечения оптимального распределения ресурсов сети.
Кроме того, моделирование процесса обслуживания запросов абонентов условно можно разделить на три этапа: запрос услуги (направление передачи информации от абонента к опорной сети, установление путей передачи информации), предоставление услуги (направление передачи информации как от абонента, так и к абоненту), завершение предоставления услуги. Следовательно, можно выделить несколько различных сетевых структур, которые в совокупности будут определять общую модель обработки информационных и сигнальных потоков в исследуемой сети. Рассматривая интерфейсный уровень взаимодействия узлов, любому устройству IP-сети можно сопоставить модель сети массового обслуживания, каждая система которой будет моделировать отдельный физический интерфейс устройства передачи информации (входной/выходной интерфейс). Рассматриваемый интерфейс можно представить в виде одноканальной системы массового обслуживания с условными потерями, но для большего соответствия реальному объекту можно ограничить число мест ожидания. Пример модели такого устройства представлен на рисунке 1. На следующем (канальном) уровне можно уже не только рассматривать физические соединения, существующие между узлами, но и учитывать направления передачи к узлам сети. Каждое направление будет задано отдельной системой массового обслуживания, тип которой определяется дисциплиной обслуживания реальной системы обработки информационных потоков. Кроме того, следует учитывать, что основные функциональные зависимости (ВВХ) исследуемых показателей являются функциями от загрузки устройств (систем массового обслуживания): pпотерь=f(r) и Tзадержки=f(r). Полученные при расчете значения вероятностно-временных показателей необходимо использовать для получения значений оценок качества обслуживания QoS на следующем сетевом уровне, так как в конкретной реальной сети распределение потоков по узлам не случайное, а подчиняется таблице маршрутизации. На данном уровне также необходимо учитывать и распределение информационных и сигнальных потоков по сети. Для каждого маршрута можно записать следующие формулы:
Tзадержки= Для всей сети в целом есть смысл определить общее среднее время задержки: Tзадержки= В настоящей работе использован тензорный подход к задаче определения параметров качества обслуживания в данной сети. Для этого необходимо определить примитивную сеть. Примитивная сеть при узловом методе состоит из незамкнутых обособленных ветвей, ее простейший элемент – ветвь. Уравнение состояния ветви определяется соотношением:
где r – загрузка системы массового обслуживания (СМО); l – интенсивность поступления сообщений; m – интенсивность обслуживания в системе [5]. Геометрические объекты примитивной сети:
Эквивалентная система уравнений, описывающих примитивную сеть, в соответствии с (1) будет иметь следующий вид:
Уравнения преобразования для узловой сети:
В матричной форме: Для установления формул преобразования геометрических объектов используется предположение о том, что поток вызовов с одной и той же интенсивностью (λ) поступления при неизменной интенсивности обслуживания вызовет одну и ту же загрузку (ρ) устройств при изменении структуры, и можно считать, что будет выполняться соотношение (инвариант):
Матрица значений интенсивностей обслуживания сообщений в системах:
Примитивная узловая сеть из n ветвей состоит из n незамкнутых обособленных ветвей. Определение компонент геометрических объектов примитивной сети состоит в нахождении векторов
получаем систему линейных уравнений, позволяющую определить загрузки исходной сети, а далее могут быть найдены значения загрузок в ветвях при заданных значениях вероятностей поступления вызовов в отдельные системы массового обслуживания. При известных параметрах устройств с использованием рассчитанных тензорным методом значениях загрузки можно найти параметры QoS для каждого маршрута. При проектировании или эксплуатации телекоммуникационной сети, работающей на базе протокола IP по приведенным теоретическим выкладкам, можно учитывать, как распределять потоки в сети, чтобы каждый поток получил требуемое качество обслуживания. На сегодняшний день в руководящих документах и рекомендациях Международного союза электросвязи для сетей передачи данных по протоколу IP определены нормы задержек для различных классов обслуживания в службах передачи данных [2].
1. Определяется структура примитивной сети и задаются матричные компоненты, описывающие примитивную сеть. Векторы интенсивностей потоков поступления 2. Находится матрица преобразования A. Относительно первого узла в новой сети выбирается k новых независимых узловых загрузок. Для каждой отдельной ветви загрузки примитивной (вспомогательной) сети 3. Вычисляются составляющие матриц 4. В соответствии с (5) строится матричное уравнение, решение которого позволяет найти вектор узловых загрузок Рассмотренная последовательность этапов анализа и разработанный теоретический аппарат хорошо формализуются, что позволяет, используя доступные вычислительные и программные средства, обеспечить реализацию тензорного подхода в программной системе. Укрупненный алгоритм работы программной системы представлен на рисунке 2. Разработанный программный комплекс создан в среде программирования Delphi 7.0 и имеет две основные рабочие области: «Model» и «Analysis». В области «Model» выполняется построение исследуемой схемы, в «Analysis» вводятся исходные данные и определяются основные характеристики сети. Область «Analysis» содержит несколько вкладок для ввода и вывода данных. На вкладке «Матрица перехода» выводится матрица A. На отдельных вкладках выводятся матрицы интенсивностей поступления и обслуживания Основными исходными компонентами, с которыми работает программная система, являются массивы данных NodeMASS и VetvMASS. В этих массивах находится вся необходимая информация для дальнейшего вычисления требуемых характеристик как отдельных систем, так и для всей сети в целом. NodeMASS – это массив данных, содержащий информацию о координатах узлов. В данном случае под узлом понимается точка соединения нескольких систем массового обслуживания или входа/выхода ветви. Координата узла имеет строго заданные значения на поле построения схемы в рабочей области «Model». Каждый узел однозначно описывается парой чисел, определяющих местоположение узла на данном поле. Однако для мнимых ветвей задан диапазон смещения от отображаемых на поле узлов с целью реализации узлового метода тензорного анализа сетей. VetvMASS является массивом данных, содержащим информацию о номере, координатах начала и конца (и их повторном использовании) и мнимости ветви. Под ветвью в данном случае понимается система массового обслуживания. Признак повторного использования координат позволяет выявить соединение ветвей между собой и наличие замкнутых контуров и, соответственно, обеспечить их преобразование в узловые пары. Для наглядного представления схемы исследуемой сети и формирования массивов NodeMASS и VetvMASS используется процедура Image1MouseUp. Отдельный цикл данной процедуры обеспечивает формирование мнимых ветвей с соответствующими координатами. Мнимые ветви формируются в связи с применением в ядре программы узлового метода, то есть все контуры преобразуются в узловые пары, в связи с чем появляются мнимые ветви с теми же интенсивностями поступления и обслуживания, что и для истинной. На рисунке 3 показано преобразование схемы с появлением мнимой ветви 5, для которой Процедура ResultBarItems1Click формирует из полученных массивов NodeMASS и VetvMASS матрицу перехода и на ее основе матрицы интенсивностей поступления Matrix_N и обслуживания Matrix_T в новых координатах. Так как выполняется условие суммы интенсивностей поступления в узле, определяются интенсивности поступления, являющиеся линейными комбинациями других интенсивностей, и, соответственно, определяются номера систем, для которых нет необходимости в задании данных интенсивностей. В этой же процедуре находится блок подготовки данных для использования в вычислениях: замена точек на запятые, ограничение длины и типа ввода. После ввода данных на вкладке «Ввод параметров» (заполнение матрицы (2)) процедура CalculateButtonClick обеспечивает проверку исходных данных на корректность заполнения для всех немнимых ветвей: заполнение матриц интенсивностей поступления и обслуживания, выбор значений буфера для систем с ограниченным буфером, выбор порядка для систем с эрланговским распределением длительности обслуживания, задание формата вывода результата (число знаков после запятой, научный или инженерный фор- маты).
В результате реализации тензорного подхода к задаче оценки QoS разработанная программная система позволяет обеспечить возможности построения любых топологий схем и выбора модели для каждой ветви схемы. При этом результатом работы являются длины очередей и время задержки в ветвях, а также вероятности переполнения буферов и стационарные вероятности состояний для каждой ветви, выбранного маршрута и всей сети в целом. Исходя из всего сказанного можно сделать следующие выводы: протокол IP является наиболее распространенным и позволяет объединить практически все существующие услуги сетей с обеспечением заданного уровня QoS; тензорный метод дает возможность достаточно просто формализовать проектные процедуры для сетей такого типа; программная реализация тензорного метода позволяет оценивать требуемые показатели качества при приемлемых вычислительных затратах. Литература 1. Cheng–Shang Chang. Stability, Queue Length and Delay of deterministic and stochastic queueing networks // IEEE Transactions on Automatic Control. 1994. Vol. 39, pp. 913–931. 2. Яновский Г.Г. Качество обслуживания в IP сетях // Вестник связи. 2008. № 1. C. 65–74. 3. Masip-Bruin X., Yannuzzi M., Serral-Gracia R., Domingo-Pascual J., Enriquez-Gabeiras J., Callejo M.A., Diaz M., Racaru F., Stea G., Mingozzi E., Beben A., Burakowski W., Monteiro E., Cordeiro L. The EuQoS system: a solution for QoS routing in heterogeneous networks // IEEE Communications Magazine. 2007. 45(2), pp. 96–103. 4. Donnet B., Friedman T. Internet topology discovery: a survey // IEEE Communications Surveys & Tutorials. 2007. Vol. 9 (4), pp. 56–69. 5. Пономарев Д.Ю. Тензорная методология в телекоммуникациях // Системы управления и информационные технологии. 2006. 1.1(23). С. 161–165. |
Постоянный адрес статьи: http://swsys.ru/index.php?page=article&id=2373&lang= |
Версия для печати Выпуск в формате PDF (4.85Мб) |
Статья опубликована в выпуске журнала № 4 за 2009 год. |
Возможно, Вас заинтересуют следующие статьи схожих тематик: