ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Journal influence

Higher Attestation Commission (VAK) - К1 quartile
Russian Science Citation Index (RSCI)

Bookmark

Next issue

4
Publication date:
09 December 2024

Choice of the mathematical scheme at construction models of operations

The article was published in issue no. № 1, 2010
Abstract:On the basis of classification carrying out the choice of the mathematical scheme of model of operations is proved. It is shown that it should represent superposition of joint behaviour in parallel and-or consistently functioning multicomponent active dynamic objects of the hybrid automatic machines constructed on the basis of a composition functioning in hybrid time and co-operating through communications on the basis of messages.
Аннотация:На основе классификации обоснован выбор математической схемы модели боевых действий. Показано, что она должна представлять собой суперпозицию совместного поведения параллельно и/или последовательно функционирующих многокомпонентных активных динамических объектов, построенных на основе композиции гибридных автоматов, функционирующих в гибридном времени и взаимодействующих через связи путем сообщений.
Authors: (jin1964@mail.ru) - , Ph.D
Keywords: components, event, active dynamic object, composition, the hybrid automatic machine, imitation, operations, mathematical model
Page views: 22950
Print version
Full issue in PDF (4.03Mb)
Download the cover in PDF (1.25Мб)

Font size:       Font:

Процесс создания математических моделей боевых действий трудоемок, длителен и требует использования труда специалистов достаточно высокого уровня, имеющих хорошую подготовку как в предметной области, связанной с объектом моделирования, так и в области прикладной математики, современных математических методов, программирования, знающих возможности и специфику современной вычислительной техники. Отличительной особенностью математических моделей боевых действий, создаваемых в настоящее время, является их комплексность, обусловленная сложностью моделируемых объектов. Необходимость построения таких моделей требует разработки системы правил и подходов, позволяющих снизить затраты на разработку модели и уменьшить вероятность появления трудноустранимых впоследствии ошибок. Важной составной частью такой системы правил являются правила, обеспечивающие корректный переход от концептуального к формализованному описанию системы на том или ином математическом языке, что достигается выбором определенной математической схемы. Под математической схемой понимается частная математическая модель преобразования сигналов и информации некоторого элемента системы, определяемая в рамках конкретного математического аппарата и ориентированная на построение моделирующего алгоритма данного класса элементов сложной системы [1].

В интересах обоснованного выбора математической схемы при построении модели целесообразно провести ее классификацию по цели моделирования, способу реализации, типу внутренней структуры, сложности объекта моделирования, способу представления времени.

Необходимо отметить, что выбор классификационных признаков определяется конкретными целями исследования. Целью классификации в данном случае является, с одной стороны, обоснованный выбор математической схемы описания процесса боевых действий и ее представление в модели в интересах получения достоверных результатов, а с другой – выявление особенностей моделируемого процесса, которые необходимо учитывать.

Цель моделирования – исследование динамики протекания процесса вооруженной борьбы и оценка показателей эффективности боевых действий. Под такими показателями понимается численная мера степени выполнения боевой задачи, которую количественно можно представить, например, относительной величиной предотвращаемого ущерба объектам обороны или наносимого противнику ущерба.

Способ реализации должен состоять в формализованном описании логики функционирования образцов вооружения и военной техники (ВВТ) в соответствии со своими аналогами в реально протекающем процессе. Необходимо учитывать, что современные образцы ВВТ – это сложные технические системы, решающие комплекс взаимосвязанных задач, которые тоже являются сложными техническими системами. При моделировании таких объектов целесообразно сохранить и отразить как естественный состав и структуру, так и алгоритмы боевого функционирования модели. Причем в зависимости от целей моделирования может потребоваться варьирование этими параметрами модели (составом, структурой, алгоритмами) для различных вариантов расчета. Данное требование определяет необходимость разрабатывать модель конкретного образца ВВТ как составную модель его подсистем, представляемых взаимосвязанными компонентами.

Таким образом, по классификационному признаку тип внутренней структуры модель должна быть составной и многокомпонентной, по способу реализации – обеспечивать имитационное моделирование боевых действий.

Сложность объекта моделирования. При разработке компонент, определяющих состав моделей образцов ВВТ, и объединении моделей образцов ВВТ в единую модель боевых действий необходимо учитывать отличающиеся на порядки характерные масштабы осреднения по времени величин, фигурирующих в компонентах.

Конечной целью моделирования является оценка показателей эффективности боевых действий. Именно для расчета этих показателей и разрабатывается модель, воспроизводящая процесс боевых действий, который условно назовем главным. Характерный временной масштаб всех остальных входящих в него процессов (первичной обработки радиолокационной информации, сопровождения целей, наведения ракет и др.) много меньше главного. Таким образом, все протекающие в вооруженной борьбе процессы целесообразно разделить на медленные, прогноз развития которых интересует, и быстрые, характеристики которых не интересуют, однако их влияние на медленные необходимо учитывать. В таких случаях характерный временной масштаб осреднения выбирается так, чтобы иметь возможность составить модель развития главных процессов. Что касается быстрых процессов, то в рамках создаваемой модели необходим алгоритм, позволяющий в моменты осуществления быстрых процессов учитывать их влияние на медленные.

Возможны два подхода к моделированию влияния быстрых процессов на медленные. Первый состоит в разработке модели их развития с соответствующим характерным временным масштабом осреднения, много меньшим, чем у главных процессов. При расчете развития быстрого процесса в соответствии с его моделью характеристики медленных процессов не меняются. Результатом расчета является изменение характеристик медленных процессов, с точки зрения медленного времени происходящее мгновенно. Для того чтобы иметь возможность реализовать этот способ расчета влияния быстрых процессов на медленные, необходимо вводить соответствующие внешние величины, идентифицировать и верифицировать их модели, что усложняет все этапы технологии моделирования.

Второй подход состоит в отказе от описания развития быстрых процессов с помощью моделей и рассмотрения их характеристик в качестве случайных величин. Для реализации этого способа необходимо иметь функции распределения случайных величин, которые характеризуют влияние быстрых процессов на медленные, а также алгоритм, определяющий моменты наступления быстрых процессов. Вместо расчета развития быстрых процессов производится выброс случайного числа и в зависимости от выпавшего значения в соответствии с известными функциями распределения случайных величин определяется значение, которое примут зависимые показатели медленных процессов, таким образом учитывается влияние быстрых процессов на медленные. В результате характеристики медленных процессов также становятся случайными величинами.

Необходимо отметить, что при первом способе моделирования влияния быстрых процессов на медленные быстрый процесс становится медленным, главным, и на его протекание влияют быстрые уже по отношению к нему процессы. Эта иерархическая вложенность быстрых процессов в медленные – одна из составляющих того качества моделирования процесса вооруженной борьбы, которое относит модель боевых действий к структурно-сложной.

Способ представления модельного времени. На практике используют три понятия времени: физическое, модельное и процессорное. Физическое время относится к моделируемому процессу, модельное – к воспроизведению физического времени в модели, процессорное – это время выполнения модели на компьютере. Соотношение физического и модельного времени задается коэффициентом K, определяющим диапазон физического времени, принимаемого за единицу модельного времени.

В силу дискретного характера взаимодействия образцов ВВТ и их представления в виде компьютерной модели модельное время целесообразно задавать путем приращения дискретных временных отрезков. При этом возможны два варианта его представления: 1) дискретное время есть последовательность равноудаленных друг от друга вещественных чисел; 2) последовательность временных точек определяется значимыми событиями, происходящими в моделируемых объектах (событийное время). С точки зрения вычислительных ресурсов второй вариант более рационален, поскольку позволяет активизировать объект и имитировать его работу только при наступлении некоторого события, а в промежутке между событиями предполагать, что состояние объектов остается неизменным.

Одной из основных задач при разработке модели является выполнение требования синхронизации всех моделируемых объектов по времени, то есть правильное отображение порядка и временных отношений между изменениями в процессе боевых действий на порядок выполнения событий в модели. При непрерывном представлении времени считается, что существуют единые для всех объектов часы, которые показывают единое время. Передача информации между объектами происходит мгновенно, и таким образом, сверяясь с едиными часами, можно установить временную последовательность всех происходивших событий. Если в модели существуют объекты с дискретным представлением времени, для формирования единых часов модели необходимо объединить множество временных отсчетов моделей объектов, упорядочить и доопределить значения сеточных функций на недостающих временных отсчетах. Синхронизировать модели объектов с событийным временем можно только явно, путем передачи сигнала о наступлении события. При этом необходима управляющая программа-планировщик организации выполнения событий различных объектов, которая и определяет требуемый хронологический порядок выполнения событий.

В модели боевых действий необходимо совместно использовать событийное и дискретное время, такое представление времени называют гибридным. При его использовании моделируемые объекты приобретают свойство изменять значения некоторых показателей состояния скачкообразно и практически мгновенно, то есть становятся объектами с гибридным поведением.

Подводя итог приведенной классификации, можно сделать вывод о том, что модель боевых действий должна представлять собой составную, структурно-сложную, многокомпонентную, динамическую, имитационную модель с гибридным поведением.

Для формализованного описания такой модели целесообразно использовать математическую схему на основе гибридных автоматов [2]. В этом случае образцы ВВТ представляются многокомпонентными активными динамическими объектами. Компоненты описываются набором переменных состояния (внешние и внутренние), структурой (одноуровневой или иерархической) и поведением (карта поведения). Взаимодействие между компонентами осуществляется посредством посылки сообщений. Для объединения компонент в модель активного динамического объекта используются правила композиции гибридных автоматов.

Введем следующие обозначения:

sÎRn – вектор переменных состояния объекта, который определяется совокупностью входных воздействий на объект , воздействий внешней среды , внутренних (собственных) параметров объекта hkÎHk,;

 – множество вектор-функций, определяющих закон функционирования объекта во времени (отражают его динамические свойства) и обеспечивающих существование и единственность решения s(t);

S0 – множество начальных условий, включающее все начальные условия компонент объекта, порождаемые функцией инициализации в процессе функционирования;

 – предикат, определяющий смену поведения объекта (выделяет из всех специально отобранных состояний нужное, проверяет условия, которые должны сопутствовать наступившему событию, и принимает при их выполнении значение истина), задается множеством булевских функций;

 – инвариант, определяющий некое свойство объекта, которое должно сохраняться на заданных промежутках времени, задается множеством булевских функций;

 – множество вещественных функций инициализации, ставящих в соответствие значению решения в правой конечной точке  текущего промежутка времени значение начальных условий в левой начальной точке на новом временном промежутке :s()=init(s());

 – гибридное время, задается последовательностью временных отрезков вида ,  – замкнутые интервалы.

Элементы гибридного времени Pre_gapi, Post_gapi являются «временной щелью» очередного такта  гибридного времени tH={t1, t2,…}. На каждом такте на отрезках  локального непрерывного времени гибридная система ведет себя как классическая динамическая система до точки t*, в которой становится истинным предикат, определяющий смену поведения. Точка t* является конечной точкой текущего и началом следующего интервала. В интервале расположены две временные щели, в которых могут изменяться переменные состояния. Течение гибридного времени в очередном такте ti=(Pre_gapi,, Post_gapi) начинается с вычисления новых начальных условий во временной щели Pre_gapi. После вычисления начальных условий проводится проверка предиката на левом конце нового промежутка времени. Если предикат принимает значение истина, оcуществля­ется переход сразу во вторую временную щель, в противном случае выполняется дискретная после­довательность действий, соответствующих текущему такту времени. Временная щель Post_gapi предназначена для выполнения мгновенных дейст­вий после завершения длительного поведения на данном такте гибридного времени.

Под гибридной системой H понимается математический объект вида

.

Задача моделирования заключается в нахождении последовательности решений Ht={(s0(t),t, t0), (s1(t),t,t1),…}, определяющих траекторию гибридной системы в фазовом пространстве состояний. Для нахождения последовательности решений Ht необходимо проводить эксперимент или имитацию на модели при заданных исходных данных. Другими словами, в отличие от аналитических моделей, с помощью которых получают решение известными математическими методами, в данном случае необходим прогон имитационной модели, а не решение. Это означает, что имитационные модели не формируют свое решение в том виде, в каком это имеет место при использовании аналитических моделей, а являются средством и источником информации для анализа поведения реальных систем в конкретных условиях и принятия решений относительно их эффективности.

В 2 ЦНИИ МО РФ (г. Тверь) на основе представления моделируемых объектов в виде гибридных автоматов разработан имитационный моделирующий комплекс (ИМК) «Селигер», предназначенный для оценки эффективности группировок сил и средств воздушно-космической обороны при отражении ударов средств воздушно-космическо­го нападения (СВКН). Основу комплекса составляет система имитационных моделей объектов, имитирующая алгоритмы боевого функционирования реальных образцов ВВТ (зенитно-ракетный комплекс, радиолокационная станция, комплекс средств автоматизации командного пункта (для радиотехнических войск – радиолокационной роты, батальона, бригады, для зенитно-ракетных войск – полка, бригады и др.), боевой авиационный комплекс (истребительной авиации и средств воздушно-космического нападения), средства радиоэлектронного подавления, огневые комплексы нестратегической противоракетной обороны и др.). Модели объектов представлены в виде активных динамических объектов (АДО), в состав которых входят компоненты, позволяющие исследовать в динамике различные процессы при их функционировании.

Подпись:  
Рис. 1. Представление РЛС многокомпонентным
АДОНапример, радиолокационная станция (РЛС) представлена следующими компонентами (рис. 1): антенная система (АС), радиопередающее устройство (РПрдУ), радиоприемное устройство (РПрУ), подсистема защиты от пассивных и активных помех (ПЗПАП), блок первичной обработки информации (ПОИ), блок вторичной обработки информации (ВОИ), аппаратура передачи данных (АПД) и др.

Композиция данных компонент в составе модели РЛС позволяет адекватно моделировать процессы приема-передачи сигналов, обнаружения эхосигналов и пеленга, алгоритмы помехозащиты, измерения параметров сигнала и др. В результате моделирования рассчитываются основные показатели, характеризующие качество РЛС как источника радиолокационной информации (параметры зоны обнаружения, точностные характеристики, разрешающая способность, производительность, помехозащищенность и т.п.), что позволяет оценить эффективность ее работы при различных условиях помехоцелевой обстановки.

Синхронизация всех моделируемых объектов по времени, то есть правильное отображение порядка и временных отношений между изменениями в процессе боевых действий на порядок выполнения событий в модели, осуществляется программой управления объектами (рис. 2). В функции данной программы также входят создание и удаление объектов, организация взаимодействия между объектами, протоколирование всех событий, происходящих в модели.

Подпись:  
Рис. 2. Управление АДО в моделиИспользование протокола событий позволяет проводить ретроспективный анализ динамики боевых действий любым моделируемым объектом. Это дает возможность оценить степень адекватности моделей объектов как с использованием методов предельных точек, так и посредством контроля корректности моделирования процессов в компонентах объекта (то есть проверка адекватности методом прогона от входа к выходу [1]), что повышает достоверность и обоснованность получаемых результатов.

Необходимо отметить, что многокомпонентный подход позволяет варьировать их составом (например, исследовать боевую работу ЗРК с различным типом АСЦУ) в интересах синтеза структуры, удовлетворяющей определенным требованиям. Причем за счет типизации программного представления компонент, без перепрограммирования исходного кода программы.

Общим преимуществом данного подхода при построении модели является возможность оперативного решения ряда исследовательских задач: оценка влияния изменения состава и структуры системы управления (количество уровней, цикл управления и др.) на эффективность боевых действий группировки в целом; оценка влияния различных вариантов информационного обеспечения на потенциальные боевые возможности образцов и группировки в целом, исследование форм и способов боевого применения образцов и др.

Построенная на основе гибридных автоматов модель боевых действий представляет собой суперпозицию совместного поведения параллельно и/или последовательно функционирующих и взаимодействующих многокомпонентных АДО, являющихся композицией гибридных автоматов, функционирующих в гибридном времени и взаимодействующих через связи на основе сообщений.

Литература

1. Сирота А.А. Компьютерное моделирование и оценка эффективности сложных систем. М.: Техносфера, 2006.

2. Колесов Ю.Б., Сениченков Ю.Б. Моделирование систем. Динамические и гибридные системы. СПб: БХВ-Петербург, 2006.


Permanent link:
http://swsys.ru/index.php?page=article&id=2463&lang=&lang=&like=1&lang=en
Print version
Full issue in PDF (4.03Mb)
Download the cover in PDF (1.25Мб)
The article was published in issue no. № 1, 2010

Perhaps, you might be interested in the following articles of similar topics: