ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Journal influence

Higher Attestation Commission (VAK) - К1 quartile
Russian Science Citation Index (RSCI)

Bookmark

Next issue

4
Publication date:
09 December 2024

Software for strength analysis of solids with inclusions

The article was published in issue no. № 1, 2011
Abstract:In this article the modified version of the «Superposition» software is presented. This program complex is used for account of stress distribution in elastic and viscoelastic solids with rigid inclusions and holes under the conditions of finite plane strains. The results of solution of problems using the software are shown.
Аннотация:В статье представлен модифицированный программный комплекс «Наложение», предназначенный для расчета напряженно-деформированного состояния упругих и вязкоупругих тел, содержащих жесткие включения и отверстия, при конечных деформациях. Приведены примеры решения задач с использованием программного комплекса.
Authors: (Konstantin.Zingerman@tversu.ru) - , Ph.D, (Olga.Ryabova@tversu.ru) -
Keywords: holes, rigid inclusions, аnalytical calculations on the computer, nonlinear effects, strength analysis
Page views: 11982
Print version
Full issue in PDF (5.09Mb)
Download the cover in PDF (1.32Мб)

Font size:       Font:

Громоздкие выкладки при приближенном решении плоских задач нелинейной упругости и вязкоупругости аналитическими методами обусловливают необходимость автоматизировать аналитические вычисления. Специализированные системы, в которых реализованы алгоритмы, учитывающие особенности класса задач, для решения которых эти системы предназначены, позволяют эффективнее использовать ресурсы ЭВМ и за счет этого решать более сложные задачи.

Программный комплекс «Наложение» предназначен для решения плоских задач теории многократного наложения больших упругих и вязкоупругих деформаций для бесконечно протяженных тел с отверстиями различной формы и (или) круговыми включениями, возникающими последовательно или одновременно после предварительного нагружения [1, 2].

Задачи решаются методом малого параметра (методом последовательных приближений). Для задач образования одной полости или включения реализован метод Ньютона–Канторовича, применимый в более широком диапазоне деформаций. Линеаризованная задача для каждого приближения решается с использованием комплексных потенциалов Колосова–Мусхелишвили. При решении задач вязкоупругости применяется преобразование Лапласа. Для случая нескольких полостей и включений при решении линеаризованной задачи используется итерационный алгоритм Шварца. Результаты расчетов могут представляться как в аналитической форме, так и в числовой – в виде таблиц и графиков.

Подпись:  Рис. 1. Эпюра истинных контурных напряжений sjj/G при одноосном сжатииПостановка задач и методы их решения, реализованные в программном комплексе «Наложение», а также результаты расчетов подробно изложены в монографиях [1, 2]. Модифицированная версия программного комплекса, основанная на алгоритмах, представленных в [3–5], позволяет решать задачи для упругих и вязкоупругих тел, содержащих не только отверстия (в том числе и образованные после нагружения), но и жесткие включения, при конечных деформациях.

Аналитические преобразования реализованы в виде процедур-функций и объединены в модули для выполнения аналитических операций:

-    над изображениями по Лапласу (линейная комбинация изображений, умножение, свертка),

-    над функциями комплексных переменных специального вида (линейная комбинация функций, умножение, дифференцирование, интегрирование, подстановки специального вида); ориентирован на решение плоской задачи теории упругости методом Мусхелишвили, а также

-    для выполнения операций над тензорами второго ранга, компонентами которых являются функции комплексных переменных, используемые в предыдущем модуле (линейная комбинация тензоров, умножение, транспонирование, применение набла-оператора).

Основной программой является Windows-при­ложение, созданное в среде Delphi.

В качестве исходных данных задаются тип материала (механические свойства), геометрия включений и отверстий, нагрузки на бесконечности и величина сжатия (растяжения) включений. Комплекс позволяет приближенно решать задачи для тел из нелинейно-упругих сжимаемых и несжимаемых материалов (Мурнагана, Муни, Черных) и несжимаемого вязкоупругого материала специального класса [1, 2] в случаях плоской деформации и плосконапряженного состояния. Предусмотрена возможность расчета как для одновременного, так и для последовательного образования концентраторов напряжений. Результаты расчетов выводятся в текстовый файл. Также можно построить графики: эпюры напряжений, контуры концентраторов напряжений в деформированном состоянии, линии уровня.

При решении задач с помощью модифицированного программного комплекса «Наложение» можно исследовать зависимость напряженно-деформированного состояния от величины, вида и направления приложенной нагрузки, свойств материала, взаимного расположения концентраторов напряжения. Приведем примеры решения задач и результаты анализа, полученные с использованием программного комплекса.

Подпись:  
Примечание: а) для случая двух включений, б) для случая од-ного включения.
Рис. 2. Эпюры истинных контурных напряжений sjj/mРассмотрим задачу о распределении напряжений в бесконечно протяженном нелинейно-упру­гом теле из материала Мурнагана с жестким круговым включением. Расчет выполнен для оргстекла: l=0,39´1012 дин/см2; G=0,186´1012 дин/см2; C3= –0,013´1012 дин/см2; C4= –0,07´1012 дин/см2; C5= 0,063´1012 дин/см2 [1]. Радиус включения – R, центр включения совпадает с началом координат.

На рисунке 1 приведена эпюра контурных истинных напряжений sjj/G на границе включения при одноосном сжатии на бесконечности s22/G= = –0,48. В правом верхнем углу приведена схема нагружения, в левом – масштаб напряжений, отнесенных к модулю сдвига G. Сплошная линия показывает линейное решение задачи, пунктирная – нелинейное, жирная сплошная линия – контур включения. Из рисунка 1 видно, что точка А и точка, симметричная ей относительно оси абсцисс, являются точками максимального по абсолютному значению напряжения для случая линейной задачи. Причем в случае решения задачи с учетом нелинейных эффектов напряжение в этих точках оказывается больше по абсолютному значению, чем в случае линейной задачи. С учетом нелинейной поправки в точке А и симметричной ей точке напряжение sjj/G увеличивается на 35 %. Для нелинейной задачи точками максимального положительного напряжения являются точки В, С и точки, симметричные им относительно начала координат. Значение напряжения в этих точках: sjj=0,10G. Численные значения взяты из соответствующего текстового файла.

Следующий расчет выполнен для бесконечно протяженного нелинейно-упругого тела с двумя жесткими круговыми включениями одинакового радиуса R. Центры включений находятся на оси ОХ. Расстояние между точками А и В, расположенными на оси ОХ, равно 0,8R (см. схему расположения включений на рисунке 2а). Расчет выполнен при одноосном растяжении в направлении оси ОХ . Материал тела несжимаемый (материал Муни).

На рисунке 2а приведена часть эпюры контурных истинных напряжений sjj/m на границе левого включения. В левом верхнем углу дан масштаб, напряжения отнесены к модулю сдви- га m. Для сравнения на рисунке 2б приведена часть эпюры контурных истинных напряжений sjj/m для случая одного включения. Видно, что наличие второго включения существенно влияет на истинное контурное напряжение.

Подпись:  Рис. 3. Эпюры истинных контурных напряжений sjj/m0 на границе отверстия (слева) и на границе включения (справа)Рассмотрим задачу об образовании треугольного отверстия в теле из вязкоупругого материала, содержащем жесткое включение круговой формы. Механические свойства исходного материала описаны в [1]. Расчеты выполнены при всестороннем растяжении на бесконечности (, остальные компоненты тензора истинных напряжений на бесконечности равны нулю) при значениях констант: A=0,0135–g, g=0,016, a=0,000167c–1, m=1 (полидиенэпоксиуретан); радиус включения – R. В декартовой системе координат центр отверстия – (0; 0), центр включения – (3,5; 0). Здесь и далее координаты приведены в долях R.

Подпись:  
Рис. 4. Контур отверстияНа рисунке 3 приведены эпюры истинных контурных напряжений: слева – эпюра контурных истинных напряжений sjj/m0 на границе отверстия, справа – на границе включения. На приведенной шкале указан масштаб напряжений, отнесенных к модулю сдвига m0. Решение приведено в момент t=12 с. Пунктирной линией обозначено решение задачи с учетом нелинейных эффектов. Особенно заметно их влияние на контуре отверстия. На рисунке также приведена схема расположения включения и отверстия относительно друг друга.

На рисунке 4 показана форма отверстия через 6 секунд после его образования. Треугольник внутри – намечаемая граница отверстия, два внешних контура – граница отверстия в указанный момент, сплошная линия соответствует линейному решению задачи, пунктирная – решению задачи с учетом нелинейных эффектов. На рисунке видно заметное влияние нелинейных эффектов на форму контура.

С помощью рассмотренного программного комплекса можно решать прикладные задачи по выполнению прочностных расчетов и анализу возможности разрушения элементов конструкций. Например, программный комплекс может использоваться при расчете на прочность резинокордных композитов при образовании в них дефектов различной формы, а также как средство тестирования для численного решения задач, например, методом конечных элементов.

Литература

1.   Левин В.А., Зингерман К.М. Плоские задачи теории многократного наложения больших деформаций. Методы решения. М.: Наука, 2002. 272 c.

2.   Левин В.А. [и др.]. Развитие дефектов при конечных деформациях. Компьютерное и физическое моделирование. М.: Физматлит, 2007. 392 с.

3.   Рябова О.А., Зингерман К.М. Численно-аналитическое моделирование напряженно-деформированного состояния вблизи жестких включений в теле из нелинейно-упругого материала с учетом их взаимовлияния // Вест. Тверского гос. ун-та: сер. Прикладная математика. Тверь: Изд-во ТГУ. 2007. № 27 (55). С. 89–98.

4.   Рябова О.А., Зингерман К.М. Нелинейная модель образования жестких включений в бесконечно протяженном упругом теле и методы ее исследования // Там же. 2009. № 28. С. 37–44.

5.   Зингерман К.М., Рябова О.А. Взаимовлияние полости и жесткого включения в нелинейно-упругом теле при конечных деформациях // Изв. ТулГУ: Естественные науки. Тула, 2010. Вып. 2. С. 64–72.


Permanent link:
http://swsys.ru/index.php?page=article&id=2739&lang=en
Print version
Full issue in PDF (5.09Mb)
Download the cover in PDF (1.32Мб)
The article was published in issue no. № 1, 2011

Back to the list of articles