На правах рекламы:
ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Авторитетность издания

ВАК - К1
RSCI, ядро РИНЦ

Добавить в закладки

Следующий номер на сайте

4
Ожидается:
09 Декабря 2024

Формирование интегрального показателя эффективности функционирования информационной системы

Forming an integral efficiency factor of information system functioning
Статья опубликована в выпуске журнала № 2 за 2012 год. [ на стр. 144 ]
Аннотация:Предлагается подход к формированию интегрального показателя эффективности функционирования информаци-онной системы с использованием ее абстрактно-алгебраической модели.
Abstract:Offered an approach to creating an integral efficiency factor of information system operation using its abstract-algebraic model.
Авторы: Семенов С.А. (sergeysemenov53@gmail.com) - Военная академия воздушно-космической обороны им. Маршала Советского Союза Г.К. Жукова, Тверь, Россия, доктор технических наук, Аржаев В.И. (arzhaeVI@cps.tver.ru) - НИИ «Центрпрограммсистем» (зав. отделением), Тверь, Россия, кандидат технических наук, Семенов В.С. (Sven258@yandex.ru ) - Военная академия воздушно-космической обороны им. Маршала Советского Союза Г.К. Жукова (преподаватель), Тверь, Россия, кандидат технических наук, Моничев С.С. (sergey.monichev@gmail.com) - концерн «ВНИИНС», г. Москва
Ключевые слова: абстрактная модель, эффективность, интегральный показатель, система
Keywords: abstract model, effectively, integral indicator, system
Количество просмотров: 11828
Версия для печати
Выпуск в формате PDF (5.19Мб)
Скачать обложку в формате PDF (1.31Мб)

Размер шрифта:       Шрифт:

На начальных этапах архитектурного проектирования одним из эффективных подходов к структуризации функционального представления информационной системы является построение обобщенной модели, абстрактно отображающей основные значимые функции системы, а также их взаимосвязи. Модель информационной системы позволяет создавать предпосылки для объективного анализа, формирования представления о подходах и путях ее построения, частичного снятия или разрешения неопределенности относительно облика системы, снижения рисков возникновения ошибок при выборе варианта ее построения [1]. Причем существенное значение для снижения такого риска играет правильный выбор показателей и критериев ее эффективности. Как показано в [2], для сложной иерархической целенаправленной информационной системы с соответствующей совокупностью сложных свойств и обширным множеством количественных показателей решение проблемы их правильного выбора состоит в организации этого множества в агрегированную иерархическую структуру и выявлении показателя, интегрально характеризующего эффективность системы. В статье рассматривается один из возможных подходов к обоснованию подобного показателя, обладающего как физическими, так и функциональными свойствами.

Под информационной системой в данном случае понимается система реального масштаба времени, состоящая из множества распределенных на местности датчиков (измерительных элементов), формирующих данные о воздушной обстановке, и иерархической структуры пунктов обработки, осуществляющих пространственно-временное объединение этих данных.

Пусть система S погружена в среду С, состоящую из совокупности разнородных составляющих, основными из которых являются надсистема Sпотр, или множество разнородных потребителей информации, и внешняя среда, представленная воздушной обстановкой, воздействующей на систему энергетически и информационно. Эти воздействия в измерительных элементах системы преобразуются во входные информационные объекты X, поступают на вход информационных процессов других уровней иерархии и выдаются в качестве выходных информационных объектов Y в надсистему X´{SÇSпотр}ÌC, SÌX´Y.                  (1)

Входной информационный объект для сложной системы можно представить как объединение подмножества измеримых, непосредственно наблюдаемых информационных воздействий M и воздействий, о которых имеется только косвенная информация U [3], то есть формируемая в результате преобразования непосредственно наблюдаемой информации: X=MÈU.                                      (2)

Преобразования могут осуществляться как логико-эвристическими, так и строгими математическими методами, а также их сочетанием. Причем в составе непосредственно наблюдаемых информационных воздействий имеются маскирующие и искажающие преднамеренные и непреднамеренные воздействия различной природы. Эти воздействия влияют на измерения, искажая как их результаты, так и результаты преобразований. С учетом маскирующих и искажающих воздействий В входной информационный объект можно представить в виде

X=MiÈBÈU, M=MiÈB,                                                                 (3)

где Мi – непосредственно наблюдаемые неискаженные информационные воздействия.

Выходной информационный объект Y формируется как результат воздействия оператора системы R на всю совокупность поступающей на вход разнородной информации X´R=Y или  причем RÍSÌY´X, или RÍSÌY´{MiÈ ÈBÈU}.

Оператор R представляет собой совокупность подмножеств алгоритмов, составляющих функционал обработки информации А, необходимых для его реализации ресурсов Р и организационно-технических объектов системы О:

R={A´P´O}.                                                           (4)

Алгоритмы, составляющие функционал, обеспечивают сбор, получение полезной информации, ее накопление и преобразование в соответствующие структуры, то есть каждый из них позволяет достичь какой-то конкретной цели. Вступая в соответствующие отношения, которые в принципе определяют организованность системы, они обеспечивают достижение общей цели ее функционирования.

Маскирующие и искажающие воздействия на входной информационный объект, неполное соответствие состава, возможностей и отношений алгоритмов системы конкретному состоянию воздушной обстановки приводят к формированию в этом объекте ложной и не удовлетворяющей требованиям потребителей информации BY:

.                            (5)

Тогда абстрактная модель информационной системы как сложной, открытой, целенаправленной гетерогенной системы выглядит следующим образом:

({{AF, RF}´P´O}:G)ÍSÌ{BYÈYi}´P

Алгоритмы, составляющие функционал, обеспечивают сбор, получение полезной информации, ее накопление и преобразование в соответствующие структуры, то есть каждый из них позволяет достичь какой-то конкретной цели. Вступая в соответствующие отношения, которые в принципе определяют организованность системы, они обеспечивают достижение общей цели ее функционирования.

Маскирующие и искажающие воздействия на входной информационный объект, неполное соответствие состава, возможностей и отношений алгоритмов системы конкретному состоянию воздушной обстановки приводят к формированию в этом объекте ложной и не удовлетворяющей требованиям потребителей информации BY:

.                            (5)

Тогда абстрактная модель информационной системы как сложной, открытой, целенаправленной гетерогенной системы выглядит следующим образом:

({{AF, RF}´

´{MiÈBÈU},                                                                (6)

где G – общая цель функционирования; AF, RF – множества автоматизированных задач (алгоритмов), реализующих функционал системы и множество отношений между ними.

Это согласуется с представлением системы как системы, состоящей из множества организационно-технических объектов О, обладающих соответствующими ресурсами Р, когда достижение общей цели G, сформированной внутри системы, сводится к решению общей задачи GF (в данном случае задачи сбора и обработки информации) и реализуется через формирование соответствующих отношений RF подмножества частных целенаправленных функций, задач, процессов, алгоритмов:

G®GF={gf}, {gf}ÛAF={af}.                          (7)

Целью информационной системы является формирование отображения, адекватного воздушной обстановке, то есть XÛY, что обеспечивается соответствием возможностей, состава и отношений между алгоритмами характеристикам входного информационного объекта [2]. Наличие во входном информационном объекте маскирующих и искажающих воздействий, неполное соответствие состава, возможностей и отношений между алгоритмами системы конкретному состоянию воздушной обстановки приводят к возникновению в системе информационных потерь и формированию неадекватного отображения. К информационным потерям относится информация, как потерянная в ходе формирования отображения, так и ложная, искаженная и не удовлетворяющая требованиям потребителей. Информационные потери, неадекватность отображения как результат функционирования являются проявлением объективно существующей неопределенности процесса отображения, связанной с совокупностью реализованных в системе средств и способов описания, преобразования и представления информации, их возможностями по обеспечению ее соответствия воздушной обстановке во всем диапазоне условий ее изменения и представления потребителю в требуемом виде. Информационными потерями удобно характеризовать степень недостижения цели функционирования системы. C учетом комбинированного характера неопределенности и доминирования при отображении в информационной системе логико-лингвистического характера ее представления [2] подмножество информационных потерь можно описать нечетким подмножеством

BY={by, m(by)}, BY={XÈY}Ç.              (8)

Таким образом, нечеткое подмножество BY представляет собой некую характеристику сте- пени недостижения цели функционирования информационной системы. В соответствии с этим количественную характеристику нечеткого подмножества BY, а именно его мощность, можно использовать в качестве характеристики степени недостижения цели функционирования информационной системы. Для удобства использования подобной интегральной характеристики целесообразно рассчитывать относительную величину показателя информационных потерь:

bпотерь=F(cardBY /card X).                                    (9)

Предлагаемый показатель обладает свойствами физического и функционального показателей. Он рассчитывается с использованием результатов  непосредственных измерений, полученных, например, в тестовом режиме, дает возможность  локализовать элементы системы, на которых происходят недопустимые потери. Отражая степень недостижения цели, этот показатель позволяет оценивать вклад информационной системы в надсистему и может использоваться в качестве обратной связи при адаптации системы к состоянию среды. Кроме того, использование сформированного на основе этого показателя критерия минимума информационных потерь позволяет вполне целенаправленно проводить проектирование информационной системы, а с помощью полученного на этапе разработки количественного значения критерия осуществлять сравнительную оценку эффективности системы в ходе применения по назначению в местах дислокации.

Литература
1. Гафт М.Г. Принятие решений при многих критериях. М.: Знание, 1979.

2. Агрегирование информации о воздушной обстановке: монография / С.А. Семенов [и др.]. Тверь: ВА ВКО, 2008.

3. Месарович М., Такахара Я. Общая теория систем: математические основы. М.: Мир, 1978.


Постоянный адрес статьи:
http://swsys.ru/index.php?page=article&id=3133&lang=&lang=&like=1
Версия для печати
Выпуск в формате PDF (5.19Мб)
Скачать обложку в формате PDF (1.31Мб)
Статья опубликована в выпуске журнала № 2 за 2012 год. [ на стр. 144 ]

Возможно, Вас заинтересуют следующие статьи схожих тематик: