Авторитетность издания
ВАК - К1
RSCI, ядро РИНЦ
Добавить в закладки
Следующий номер на сайте
№4
Ожидается:
16 Декабря 2025
Параллельные алгоритмы для анализа прочности наводороженных конструкций
Parallel algorithms designed for the strength analysis of hydrogen-charged structures
Статья опубликована в выпуске журнала № 3 за 2012 год. [ на стр. 235-239 ]Аннотация:Предложена модель оценки водородной хрупкости плоских элементов металлических конструкций с дефектами. Известно, что в металлических деталях с дефектами распределение концентрации водорода существенно неравномерно – около дефектов формируются зоны повышенной концентрации с высоким давлением молекулярного водорода. Разработанная модель может использоваться при анализе процессов разрушения металлических конструкций, подверженных интенсивному внешнему воздействию. В этом случае внутреннее давление в дефектах растет достаточно быстро, что приводит к разрушению элементов конструкций. В основе модели лежит алгоритм решения связной диффузионно-деформационной задачи, которая включает в себя как уравнения, описывающие процессы диффузии водорода в напряженном поле, так и уравнения механики для тензоров напряжения и деформации, учитывающие влияние процесса диффузии. Решение деформационной задачи в рамках линейной теории упругости осуществляется с помощью модифицированного метода граничных элементов. Накопление водорода в окрестностях дефектов опи-сывается уравнением конвективной диффузии в поле высоких механических напряжений. Диффузионная задача также решается модифицированным методом граничных элементов. Решение связной задачи осуществляется по шагам по времени. На заключительном этапе расчетов на каждом шаге вычисляется давление молекулярного водорода в каждом из дефектов и выполняется проверка условия разрушения их границ. Для сокращения затрат машинного времени использовалась процедура распараллеливания счета. На базе алгоритма разработана программа с возможно-стью реализации на многопроцессорном вычислительном комплексе. В качестве иллюстрации предложенного алго-ритма была решена двухмерная задача диффузии водорода в окрестности дефекта – поры для металлического образца, находящегося под действием внешних растягивающих напряжений. Результаты расчетов показаны на графиках.
Abstract:The work provides a model for estimation of hydrogen brittleness for flat elements used in metal structures with defects. It is known that defective metal parts the hydrogen concentration is distributed fairly uneven – defect area is surrounded with molecular hydrogen of high concentration under high pressure. This model can be used for analysis of destruction process of a metal structure that is exposed to intensive external action. In this case, internal pressure in defects grows quickly, and this leads to destruction of such elements. The model uses algorithm of coupled diffusion-deformation problem. Coupled problem includes equations that describe hydrogen diffusion process in high field, and mechanic equations for stress and deformation tensors that consider diffusion process. Solution of deformation problem in linear elasticity theory is made with modified boundary element method. Collection of the hydrogen around defect area is described by convective diffusion in the field of high mechanical stress. Diffusion problem can be solved with modified boundary element method. Solution of the coupled problem can be obtained step by step in time. In final stage of calculation, each step produces value of molecular hydrogen pressure in every defect and then destruction condition of boundaries is checked. For reduction of computing time, parallelizing procedure was performed. The program was designed with this algorithm. This program can be implemented on multiprocessor computing system. This algorithm was illustrated by solution of two-dimensional problem of hydrogen diffusion around the defect – pores for the metal sample exposed to external tension stress. Calculation outputs are shown in charts.
| Авторы: Федотов В.П. (fedotov@imach.uran.ru) - Московский государственный технический университет им. Н.Э. Баумана, г. Москва, Россия, Спевак Л.Ф. (lfs@imach.uran.ru) - Институт машиноведения УрО РАН, г. Екатеринбург, г. Екатеринбург, Россия, доктор технических наук, Нефедова О.А. (nefedova@imach.uran.ru) - Институт машиноведения УрО РАН, г. Екатеринбург, г. Екатеринбург, Россия | |
| Ключевые слова: аналитическое интегрирование., модифицированный метод граничных элементов, водородное охрупчивание, связная диффузионно-деформационная задача, параллельные вычисления |
|
| Keywords: analytical integration, modified boundary element method, hydrogen embrittlement, coupled diffusion-deformation problem, parallel computing |
|
| Количество просмотров: 15436 |
Версия для печати Выпуск в формате PDF (7.64Мб) Скачать обложку в формате PDF (1.33Мб) |
Параллельные алгоритмы для анализа прочности наводороженных конструкций
Статья опубликована в выпуске журнала № 3 за 2012 год. [ на стр. 235-239 ]
Предложена модель оценки водородной хрупкости плоских элементов металлических конструкций с дефектами. Известно, что в металлических деталях с дефектами распределение концентрации водорода существенно неравномерно – около дефектов формируются зоны повышенной концентрации с высоким давлением молекулярного водорода. Разработанная модель может использоваться при анализе процессов разрушения металлических конструкций, подверженных интенсивному внешнему воздействию. В этом случае внутреннее давление в дефектах растет достаточно быстро, что приводит к разрушению элементов конструкций. В основе модели лежит алгоритм решения связной диффузионно-деформационной задачи, которая включает в себя как уравнения, описывающие процессы диффузии водорода в напряженном поле, так и уравнения механики для тензоров напряжения и деформации, учитывающие влияние процесса диффузии. Решение деформационной задачи в рамках линейной теории упругости осуществляется с помощью модифицированного метода граничных элементов. Накопление водорода в окрестностях дефектов опи-сывается уравнением конвективной диффузии в поле высоких механических напряжений. Диффузионная задача также решается модифицированным методом граничных элементов. Решение связной задачи осуществляется по шагам по времени. На заключительном этапе расчетов на каждом шаге вычисляется давление молекулярного водорода в каждом из дефектов и выполняется проверка условия разрушения их границ. Для сокращения затрат машинного времени использовалась процедура распараллеливания счета. На базе алгоритма разработана программа с возможно-стью реализации на многопроцессорном вычислительном комплексе. В качестве иллюстрации предложенного алго-ритма была решена двухмерная задача диффузии водорода в окрестности дефекта – поры для металлического образца, находящегося под действием внешних растягивающих напряжений. Результаты расчетов показаны на графиках.
Федотов В.П. (fedotov@imach.uran.ru) - Московский государственный технический университет им. Н.Э. Баумана, г. Москва, Россия, Спевак Л.Ф. (lfs@imach.uran.ru) - Институт машиноведения УрО РАН, г. Екатеринбург, г. Екатеринбург, Россия, доктор технических наук, Нефедова О.А. (nefedova@imach.uran.ru) - Институт машиноведения УрО РАН, г. Екатеринбург, г. Екатеринбург, Россия
Ссылка скопирована!
| Постоянный адрес статьи: http://swsys.ru/index.php?page=article&id=3250&lang=&lang=&like=1 |
Версия для печати Выпуск в формате PDF (7.64Мб) Скачать обложку в формате PDF (1.33Мб) |
| Статья опубликована в выпуске журнала № 3 за 2012 год. [ на стр. 235-239 ] |
Статья опубликована в выпуске журнала № 3 за 2012 год. [ на стр. 235-239 ]
Возможно, Вас заинтересуют следующие статьи схожих тематик:Возможно, Вас заинтересуют следующие статьи схожих тематик:
- Моделирование процессов упругопластического деформирования модифицированным методом граничных элементов
- Язык описания модели предметной области в пакетах прикладных программ
- Параллельные вычисления как средство повышения эффективности решения задач вычислительной аэродинамики
- Моделирование столкновений трех атомов после одновременного вылета с поверхности конденсированной фазы
- Генетический алгоритм для задачи вершинной минимизации недетерминированных конечных автоматов
Назад, к списку статей


, xÎW; (1)
, xÎW, (2)
, xÎW;
– оператор Лапласа; VH – парциальный молярный объем водорода в металле; R – газовая постоянная; T – абсолютная температура; s – среднее нормальное напряжение; Ñ=(¶/¶x1, ¶/¶x2) – градиент функции; Ñs×Ñc – скалярное произведение векторов; r – массовая плотность материала; u(u1, u2) – вектор перемещений; l и m – коэффициенты Ламе; f(x, t, c) – вектор поверхностных напряжений; Г=Гf ÈГu – граница области W. Звездочкой отмечены заданные начальные и граничные значения.

. (7)
принимается в качестве неоднородности; функции влияния G*(x0, x, tK, t) и F*(x0, x, tK, t) для двухмерной задачи диффузии определяются в виде
,
.
Поскольку при удалении от дефекта градиент напряжения быстро убывает, функцию y(x, t) можно учитывать только в зонах влияния – окрестностях дефектов, за границами которых градиент напряжений пренебрежимо мал. Для вычисления в произвольный момент времени интегралов по граничным элементам, необходимых для решения граничного интегрального уравнения и для вычисления концентрации и ее пространственных производных внутри области, были получены аналитические формулы. При этом рассматривались различные виды аппроксимации на прямолинейном граничном элементе, в том числе аппроксимация, основанная на граничноэлементном решении одномерной задачи диффузии для элемен- та [3].
, (8)
, (9)
Этап 4. Проверяется условие разрушения границы каждого дефекта. Для этого внутреннее давление водорода в дефекте сравнивается с критическим давлением [1] на предмет выполнения неравенства
. (10)
Программа состоит из графического редактора и расчетного модуля. Графический редактор ввода данных написан на языке программирования Java и работает под операционными системами Windows и Linux. Инструментальные средства редактора позволяют строить геометрическую модель плоской области с внутренними дефектами (порами и трещинами), задавать краевые условия, физические параметры процесса, а также внутреннюю область для расчета. Внешняя граница и внутренняя область моделируются замкнутыми ломаными линиями, отдельные звенья которых могут быть дугами окружностей. Расположение дефектов может и задаваться пользователем, и определяться случайным вероятностным распределением. Для редактирования построенной области используются операции перемещения всей области, добавления, удаления или перемещения отдельных вершин, имеется также и возможность изменения масштаба координатной сетки. Для большей наглядности все геометрические и физические параметры процесса, краевые условия задачи заносятся в таблицы и легко редактируются. После ввода входные данные преобразуются в специальный формат для их дальнейшей обработки.
В качестве иллюстрации применения программы была рассмотрена двухмерная задача растяжения в водородосодержащей среде прямоугольной области l´d с внутренним дефектом – порой радиуса a, расположенной в центре детали (рис. 2). Выбор в качестве механического воздействия продольного растяжения обусловлен тем, что при растяжении происходит быстрое разрушение материала области и интересующие характеристики водородного охрупчивания проявляются в полной мере. На внешней границе приложено постоянное во времени растягивающее напряжение P2*. Задача решена в нескольких вариантах при следующих значениях параметров: l=20 м; d=10 м; a=0,5 м; E=2×1011 H/м2; v=0,28; P2*=106 H/м2; c0*=0; c*=20 моль/л; D=4,3×10-9 м2/с; R=8,3 Дж/(моль×К); VH=2×10-6 м3/моль; VМ=22,4×10-3 м3/моль; М=2,016 г/моль; T=295 K; sT=250×106 H/м2.