На правах рекламы:
ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Авторитетность издания

ВАК - К1
RSCI, ядро РИНЦ

Добавить в закладки

Следующий номер на сайте

4
Ожидается:
09 Сентября 2024

Интеллектуальное управление роботом-манипулятором на основе мягких вычислений

Intelligent control of a robot manipulator based on soft computing
Статья опубликована в выпуске журнала № 4 за 2013 год. [ на стр. 157-162 ]
Аннотация:Рассматривается проблема проектирования интеллектуальных систем управления с применением технологий мягких вычислений на примере робота-манипулятора с тремя степенями свободы. Приводится общая методология проектирования робастных баз знаний с использованием специального интеллектуального инструментария – оптимизатора баз знаний на мягких вычислениях. Предложены варианты организации координационного управления: создание единой базы знаний, содержащей информацию о трех звеньях робота-манипулятора, а также метод разделения (декомпозиции) управления – создание независимых баз знаний для индивидуального управления звеньями. Эффективность спроектированных интеллектуальных систем управления с применением технологий мягких вычислений рассматривается в сравнении с системой управления с постоянными параметрами регулирующего звена, определенными с помощью генетического алгоритма. Для оценки работы систем управления введена система критериев качества, учитывающая методы оценки переходных процессов теории автоматического управления, адаптированная для рассматриваемого объекта управления – робота-манипулятора с тремя степенями свободы. Оценка работы систем управления производится по результатам моделирования в среде MatLab/Simulink и по результатам серии экспериментов на физическом макете объекта управления.
Abstract:The problem of designing control systems using soft computing is described with 3 degrees of freedom manipulator as an example. The article investigates a general methodology of robust knowledge base design using special intelligent toolkit (Knowledgebase Optimizator on soft computing technology). Variations of organization coordinated control are proposed: single knowledge base containing information about manipulator’s three links, and a divided control method (independent knowledge bases for particular links control). The efficiency of constructed intelligent control systems using soft computing technology is described in comparison with control system using constant settings of regulator defined by genetic algorithm. Set of performance criteria taking into consideration for automatic control theory methods of transition estimations and tailored to concerned control object (3 degrees of freedom robot manipulator) is used to estimate control systems work. Estimate of control system work is performed by results of MatLab/Simulink simulation and experiment series on practical control object.
Авторы: Николаева А.В. (nikolaevaav@lenta.ru) - Международный университет природы, общества и человека «Дубна», Институт системного анализа и управления (аспирант), г. Дубна, Россия, Ульянов С.В. (ulyanovsv46_46@mail.ru) - Государственный университет «Дубна» – Институт системного анализа и управления, Объединенный институт ядерных исследований – лаборатория информационных технологий (профессор), Дубна, Россия, доктор физико-математических наук
Ключевые слова: технологии мягких вычислений, база знаний, нечеткий регулятор, интеллектуальная система управления
Keywords: soft computing technology, knowledge base, fuzzy controller, intelligent control system
Количество просмотров: 13669
Версия для печати
Выпуск в формате PDF (7.95Мб)
Скачать обложку в формате PDF (1.45Мб)

Размер шрифта:       Шрифт:

Принципиальной особенностью в построении многозвенных манипуляционных устройств является модульность, которая обеспечивает адаптивность и реконфигурируемость динамической структуры в соответствии с решаемой задачей [1–3]. Увеличение сложности структур объектов управления и трудности прогнозирования непредвиденных ситуаций управления усиливают внимание к поиску решения задачи гарантированного управления в условиях риска возникновения нештатных ситуаций. Построение интеллектуальной системы управления (ИСУ) роботом-манипулято­ром возможно с применением технологий мягких вычислений.

Структуры интеллектуальных систем управления с применением технологий мягких вычислений

Основным элементом ИСУ с применением технологий мягких вычислений [4, 5] является нечеткий регулятор (НР), управляющий коэффициентами усиления регулятора.

НР осуществляет управление коэффициентами усиления регулятора за счет интегрированной в него базы знаний (БЗ), включающей данные о виде и параметрах функций принадлежности входных и выходных нечетких переменных, а также набор нечетких продукционных правил.

В качестве регулятора используем пропорционально-интегрально-дифференциальный регулятор (ПИД-регулятор) как наиболее распространенный [6, 7].

Создание БЗ для НР производится с помощью Оптимизатора баз знаний (ОБЗ) на основе мягких вычислений в следующей последовательности:

–      создание обучающего сигнала – определение типовой ситуации управления (например штатной ситуации), формирование таблицы коэффициентов ПИД-регулятора и ошибок управления с помощью генетического алгоритма (ГА);

–      формирование модели нечеткого вывода – определение типа нечеткой модели, интерпретации нечетких операций, числа входных и выходных переменных;

–      создание лингвистических переменных для входных значений;

–      создание базы правил;

–      настройка базы правил;

–      оптимизация левых и правых частей пра- вил БЗ.

(Разработка инструментария подтверждена Свид. о гос. регистр. прогр. для ЭВМ № 2011619257 от 1.12.2011 г., авторы: С.В. Ульянов, Л.В. Литвинцева, А.А. Мишин, С.В. Сорокин.)

На рисунке 1 приведена прямая цепь структуры ИСУ на основе ОБЗ с применением технологий мягких вычислений для управления роботом-ма­нипулятором с тремя степенями свободы.

ИСУ на ОБЗ на мягких вычислениях с единой БЗ, заложенной в НР, позволяет собрать информацию о взаимном поведении одновременно трех звеньев робота-манипулятора в единую БЗ, однако высокая сложность реализуемой БЗ требует значительных вычислительных ресурсов для создания и размещения. В [8] приводится зависимость максимального числа нечетких правил создаваемой БЗ от числа степеней свободы робота-мани­пулятора.

Упростить процесс проектирования ИСУ и снизить требования к вычислительным ресурсам возможно путем декомпозиции управления – разделения единой БЗ на несколько независимых. Однако в результате рассогласования работы разделенных независимых БЗ несколько снижается качество управления.

ИСУ с разделенным управлением на основе технологий мягких вычислений для управления манипулятором с тремя степенями свободы и с применением на нижнем исполнительном уровне ПИД-регулятора представлена на рисунке 2.

Подпись:  Рис. 2. ИСУ с разделенным управлением на ОБЗ на мягких вычислениях для управления манипулятором с тремя степенями свободы:Qref – воздействующий (задающий) сигнал; Q¢ – измеренная регулируемая величина; s(t) – ограничение управляю-щего воздействия; d(t) – задержка в измерительной системе; TSi,   – обучающий сигнал соответствующе-го НР; m(t) – внешнее воздействие средыПодпись:  

Рис. 3. Макет робота-манипулятора 
с тремя степенями свободы
Используется способ декомпозиции управления, когда каждый НР с заложенной БЗ отвечает за управление одним звеном.

Оценка работы рассмотренных ИСУ производится по результатам MatLab/Simulink-модели­рования и по результатам серии экспериментов на физическом ОУ.

Реализация системы управления роботом-манипулятором с тремя степенями свободы

Для исследования качества систем управления был разработан макет робота-манипулятора с тремя степенями свободы (рис. 3).

В отличие от традиционного подхода в данной работе поведение звеньев макета робота-манипу­лятора было формализовано таблицами соответствий, что позволило описать поведение робота в среде MatLab/Simulink, то есть была создана модель реального ОУ без привлечения математической модели манипулятора. Это позволило ускорить идентификацию модели ОУ и получение приемлемых параметров управления для разных типов систем управления и с различным уровнем интеллектуальности.

Подпись: Критерий качества	MatLab/Simulink-модели	Физический макет
	Система управления на ГА	ИСУ с разде-ленным управ-лением	ИСУ с одним НР	Система управления на ГА	ИСУ с разде-ленным управ-лением	ИСУ с одним НР
Решение в штатных ситуациях управления	0,7	1	1	0,5	1	1
Решение в непредвиденных 
ситуациях управления	0,1	0,833333	1	0	0,9	1
Быстродействие	0,102167	0,516917	0,870667	0,02075	0,569167	0,813167
Относительное значение 
перерегулирования	1	0,996353	1	0,9282	0,996051	0,999625
Относительная ошибка 
позиционирования звеньев	0,820618	0,888263	0,999603	0,797575	0,989769	0,999625
Время одной итерации	0,981935	0,96783	0,969978	0,7483	0,75755	0,771525
Сложность реализации 
управления	1	0,948788	0,9682	1	0,935675	0,965925
Общее управление	0,410689	0,819583	0,969501	0,305148	0,845152	0,938026

Для оценки работы систем управления (как для MatLab/Simulink-моделей, так и для физического макета) введена хорошо известная система критериев качества, учитывающая методы оценки переходных процессов теории автоматического управления. Данные методы были адаптированы для рассматриваемого ОУ в следующем виде:

–      решение задачи позиционирования в штатных ситуациях управления;

–      решение задачи позиционирования в непредвиденных ситуациях управления;

–      быстродействие;

–      относительное значение перерегулирования;

–      относительная ошибка позиционирования звеньев;

–      время одной итерации;

–      сложность реализации управления;

–      общая оценка управления.

Методика проведения экспериментов приведена в [8].

Работу рассмотренных ИСУ на ОБЗ на основе мягких вычислений (с одним НР и с разделенным управлением) рассмотрим в сравнении с системой управления с постоянными коэффициентами ПИД-регулятора, подобранными с помощью ГА.

В таблице приведено сравнение ИСУ на ОБЗ на мягких вычислениях с системой управления на ГА соответственно для MatLab/Simulink-модели и физического макета робота-манипулятора по введенному ряду критериев качества.

Из результатов сравнения видно, что при использовании ИСУ на ОБЗ на мягких вычислениях в отличие от системы управления на ГА задача управления решается как для штатных, так и непредвиденных ситуаций управления, значительно увеличивается быстродействие, улучшается показатель точности позиционирования, однако увеличивается сложность реализации управления.

В результате использования ИСУ на ОБЗ на мягких вычислениях с разделенным управлением по сравнению с ИСУ на ОБЗ на мягких вычислениях с одним НР все показатели качества несколько ухудшаются, что происходит из-за рассогласования работы разделенных независимых БЗ.

Продемонстрируем работу рассмотренных ИСУ с применением технологий мягких вычислений (с одним НР) в условиях непредвиденных ситуаций управления (рис. 4) по сравнению с системой управления на ГА. В качестве непредвиденной выступает ситуация, одновременно включающая внешнее воздействие (принудительное перемещение второго звена) и внутренние изменения регулирующего звена (ограничение управляющего воздействия).

Как видно из рисунка 4, в отличие от системы управления на ГА ИСУ на ОБЗ на мягких вычислениях справляется с задачей точного позиционирования за малое число итераций.

Рассмотрим законы управления (рис. 5), формируемые описанными типами систем управления. Из рисунка видно, что законы управления, формируемые системой управления на ГА, для первого и третьего звеньев имеют заведомо большую амплитуду по сравнению с аналогичными законами управления, формируемыми ИСУ на ОБЗ на мягких вычислениях, однако для второго звена в законе управления, формируемом системой управления на ГА, не отражается реакция на внешнее воздействие, в результате чего задача точного позиционирования не решается. Законы управления, формируемые ИСУ на ОБЗ на мягких вычислениях с разделенным управлением, по сравнению с ИСУ на ОБЗ на мягких вычислениях с одним НР при сравнимой амплитуде имеют большее перерегулирование.

Таким образом, минимальный расход полезного ресурса при формировании законов управления Подпись:   Рис. 4. Работа системы управления на ГА (слева); работа ИСУ на ОБЗ на мягких вычислениях с одним НР в непредвиденной ситуации управления (справа)обеспечивается при использовании ИСУ на ОБЗ на мягких вычислениях с одним НР.

В результате сравнения работы рассмотренных типов систем управления можно сделать следующие выводы:

–      структура системы управления на основе ГА проста для реализации, однако вследствие постоянства параметров управления решение задачи точного позиционирования возможно только для части штатных ситуаций (для которых были подобраны коэффициенты ПИД-регулятора);

–      единая БЗ ИСУ на ОБЗ на мягких вычислениях с одним НР содержит наиболее полную информацию о поведении всех звеньев, что позволяет ИСУ работать как в штатных, так и в непредвиденных ситуациях управления; однако создание единой БЗ – сложный и длительный процесс, требующий значительных вычислительных ресурсов, а в дальнейшем и большого объема памяти для размещения БЗ;

–      Подпись:  Рис. 5. Законы управления, формируемые системой управления на ГА, ИСУ на ОБЗ на мягких вычислениях с одним НР и ИСУ на ОБЗ на мягких вычислениях с разделенным управлением:GA – формируемый системой управления на ГА; FC – формируемый ИСУ на ОБЗ на мягких вычислениях с одним НР; FC Decomposition – формируемый ИСУ на ОБЗ на мягких вычислениях с разделенным управлениемдекомпозиция управления в структуре ИСУ на ОБЗ на мягких вычислениях с разделенным управлением за счет незначительного снижения качества управления вследствие рассогласования поведения звеньев в результате независимости создания и функционирования БЗ позволяет значительно упростить процессы создания и размещения БЗ.

Влияние рассогласования управления в структуре ИСУ на ОБЗ на мягких вычислениях с разделенным управлением может быть снижено организацией координационного управления путем введения дополнительного согласующего звена, реализация которого возможна с применением технологий квантовых вычислений. Опыт применения ОБЗ на мягких вычислениях показал повышенную эффективность по сравнению с инструментарием ANFIS в среде MatLab [9].

Литература

1.     International assessment of research and development in robotics. WTEC Panel Report, 2006.

2.     Lewis F.L., Munro N. Robot Manipulator Control, NY, 2004, 607 p.

3.     Черноусько Ф.Л., Болотник Н.Н., Градецкий В.Г. Манипуляционные роботы: динамика, управление, оптимизация. М.: Наука, 1989. 368 с.

4.     Ульянов С.В., Литвинцева Л.В., Добрынин В.Н., Ми­шин А.А. Интеллектуальное робастное управление: техноло­гии мягких вычислений. М.: ВНИИгеосистем, 2011. 408 с.

5.     Zadeh L.A. Fuzzy Logic, Neural Networks, and Soft Computing. Communications of the ACM, 1994, vol. 37, no. 3, pp. 77–84.

6.     Yu W., Rosen J. Neural PID Control of Robot Manipulators with Application to an Upper Limb Exoskeleton. Cybernetics, IEEE Transactions, 2013, vol. 43, no. 2.

7.     Meza J.L., Santibáñez V., Soto R., Llama M.A. Fuzzy Self-Tuning PID Semiglobal Regulator for Robot Manipulators. Industrial Electronics, IEEE Transactions, 2012, vol. 59, no. 6.

8.     Николаева А.В., Ульянов С.В. Проектирование интеллектуальной системы управления роботом-манипулятором. Ч. 2: Декомпозиция управления и физический эксперимент на основе технологии мягких вычислений // Системный анализ в науке и образовании: сетевое научное издание. 2013. № 1. С. 1–22.

9.     Patel J., Gianchandani R. ANFIS control for robotic manipulators: Adaptive neuro fuzzy inference systems for intelligent control. LAP Lambert Academic Publ., 2011.

References

1.     International assessment of research and development in robotics. WTEC Panel Report, 2006.

2.     Lewis F.L., Munro N. Robot Manipulator Control. NY, 2004, 607 p.

3.     Chernousko F.L., Bolotnik N.N., Gradeckiy V.G. Mani­pulyatsionnye roboty: dinamika, upravlenie, optimizatsiya [Mani­pulation Robots: Dynamics, control, optimization]. Moscow, Nauka Publ., 1989, 368 p.

4.     Ulyanov S.V., Litvintseva L.V., Dobrynin V.N., Mi- shin A.A. Intellektualnoe robastnoe upravlenie: tekhnologii myag­kikh vychisleniy [Intelligent robust control: soft computing tech­nology]. Moscow, VNIIgeosystem Publ., 2011, 408 p.

5.     Zadeh L.A. Fuzzy Logic, Neural Networks, and Soft Computing. Communications of the ACM. 1994, vol. 37, no. 3, pp. 77–84.

6.     Yu W., Rosen J. Neural PID Control of Robot Manipulators with Application to an Upper Limb Exoskeleton. Cybernetics, IEEE Transactions. 2013, vol. 43, no. 2.

7.     Meza J.L., Santibáñez V., Soto R., Llama M.A. Fuzzy Self-Tuning PID Semiglobal Regulator for Robot Manipulators. Industrial Electronics, IEEE Transactions. 2012, vol. 59, no. 6.

8.     Nikolaeva A.V., Ulyanov S.V. Intelligent control system of a robot manipulator. Pt. 2. Control decomposition and physical experiment based on soft computing technology. Sistemny analiz v nauke i obrazovanii [System analysis in science and education]. 2013, no. 1, pp. 1–22 (in Russ.).

9.     Patel J., Gianchandani R. ANFIS control for robotic manipulators: Adaptive neuro fuzzy inference systems for intelligent control. LAP Lambert Academic Publ., 2011.


Постоянный адрес статьи:
http://swsys.ru/index.php?page=article&id=3677
Версия для печати
Выпуск в формате PDF (7.95Мб)
Скачать обложку в формате PDF (1.45Мб)
Статья опубликована в выпуске журнала № 4 за 2013 год. [ на стр. 157-162 ]

Возможно, Вас заинтересуют следующие статьи схожих тематик: