Journal influence
Higher Attestation Commission (VAK) - К1 quartile
Russian Science Citation Index (RSCI)
Bookmark
Next issue
№3
Publication date:
16 September 2025
The software implementation of Fourier coefficients estimation with limited computational resources
Date of submission article: 23.03.2015
UDC: 517.587:519.216
The article was published in issue no. № 3, 2015 [ pp. 113-118 ]Abstract:Carrying out a scientific research in different areas requires huge amounts of computing power. Moreo-ver, computationally demanding tasks are assumed to have access to powerful servers and computing clusters and are expected to support handling big data sets. On the other hand, mobile devices have become increasingly powerful, that makes it possible to employ them in large-scale data processing, particularly, for volunteer computing like BOINC and Folding@home. Nevertheless, despite the advances in hardware, it is important to improve computational algorithms taking into account the following constraints which are determined by mobile devices characteristics: long response time, limited memory and battery life. The main purpose of this research is to create the algorithms to estimate Fourier coefficients according to these minimal requirements. To attain the aim, we employed connection coefficients method to work out specific relations for continuous Laguerre functions. In comparison with the corresponding recurrence re-lations, which entail an enormous computational cost, the proposed analytical relations require less computational re-sources to produce results (in particular, time and space). To support the theoretical results, we conducted a series of computational experiments using MATLAB Profiler. The findings of this research present the software implementa-tion of Fourier coefficients estimation to operate with limited computational resources and the results of the mobile application tested on a device. Based on these tests, we analysed the elapsed running time to process big data sets vary-ing the volume of data and the number of Fourier coefficients.
Аннотация:Научные исследования в различных областях науки и техники требуют значительных вычислительных затрат. Более трудоемкие задачи решаются с помощью суперкомпьютеров и вычислительных кластеров, которые позволяют обрабатывать большие массивы данных. С ростом вычислительной мощности мобильных устройств стало возможным их использование для решения указанной задачи, в частности, в качестве клиентов на платформах BOINC и Folding@home. Тем не менее, несмотря на аппаратные преимущества, для повышения эффективности обработки больших массивов данных необходимо адаптировать используемые для вычислений алгоритмы с учетом специфики мобильных устройств, которые накладывают ограничения на используемые ресурсы, такие как время отклика, раз-мер используемой памяти и потребляемая мощность. Целью данной работы является адаптация численно-аналитического метода оценки коэффициентов Фурье, реализованная с помощью нахождения коэффициентов связи между различными наборами функций в базисе Лагерра. Полученные аналитические соотношения в сравнении с рекуррентными соотношениями позволили снизить временные затраты и размеры используемой памяти на хранение промежуточных наборов значений. Для подтверждения эффективности предлагаемых алгоритмов была проведена серия вычислительных экспериментов в MATLAB Profiler. Адаптированные алгоритмы оценки коэффициентов разложения при ограниченных вычислительных ресурсах были положены в основу программной реализации на реальном мобильном устройстве, которая была протестирована при обработке больших массивов данных. На основе проведенных тестов сделан анализ затрачиваемых временных ресурсов при варьировании объема исходных данных и количества членов разложения ряда Фурье.
Authors: Prokhorov S.A. (sp.prokhorov@gmail.com) - Samara State Aerospace University, Samara, Russia, Ph.D, Kulikovskikh I.M. (kulikovskikh.i@gmail.com) - Samara State Aerospace University, Samara, Russia, Ph.D | |
Keywords: big data sets, connection coefficients, laguerre functions, fourier coefficients, analytical- numerical methods, mobile devices, limited computational resources |
|
Page views: 11219 |
Print version Full issue in PDF (8.21Mb) Download the cover in PDF (1.09Мб) |
Программная реализация оценивания коэффициентов Фурье при ограниченных вычислительных ресурсах
DOI: 10.15827/0236-235X.111.113-118
Date of submission article: 23.03.2015
UDC: 517.587:519.216
The article was published in issue no. № 3, 2015. [ pp. 113-118 ]
Carrying out a scientific research in different areas requires huge amounts of computing power. Moreo-ver, computationally demanding tasks are assumed to have access to powerful servers and computing clusters and are expected to support handling big data sets. On the other hand, mobile devices have become increasingly powerful, that makes it possible to employ them in large-scale data processing, particularly, for volunteer computing like BOINC and Folding@home. Nevertheless, despite the advances in hardware, it is important to improve computational algorithms taking into account the following constraints which are determined by mobile devices characteristics: long response time, limited memory and battery life. The main purpose of this research is to create the algorithms to estimate Fourier coefficients according to these minimal requirements. To attain the aim, we employed connection coefficients method to work out specific relations for continuous Laguerre functions. In comparison with the corresponding recurrence re-lations, which entail an enormous computational cost, the proposed analytical relations require less computational re-sources to produce results (in particular, time and space). To support the theoretical results, we conducted a series of computational experiments using MATLAB Profiler. The findings of this research present the software implementa-tion of Fourier coefficients estimation to operate with limited computational resources and the results of the mobile application tested on a device. Based on these tests, we analysed the elapsed running time to process big data sets vary-ing the volume of data and the number of Fourier coefficients.
Prokhorov S.A. (sp.prokhorov@gmail.com) - Samara State Aerospace University, Samara, Russia, Ph.D, Kulikovskikh I.M. (kulikovskikh.i@gmail.com) - Samara State Aerospace University, Samara, Russia, Ph.D
Ссылка скопирована!
Permanent link: http://swsys.ru/index.php?page=article&id=4037&lang=en |
Print version Full issue in PDF (8.21Mb) Download the cover in PDF (1.09Мб) |
The article was published in issue no. № 3, 2015 [ pp. 113-118 ] |
The article was published in issue no. № 3, 2015. [ pp. 113-118 ]
Perhaps, you might be interested in the following articles of similar topics:Perhaps, you might be interested in the following articles of similar topics: