Journal influence
Higher Attestation Commission (VAK) - К1 quartile
Russian Science Citation Index (RSCI)
Bookmark
Next issue
№3
Publication date:
16 September 2025
Finding sloutions by the modified Rete algorithm for fuzzy expert systems
Date of submission article: 09.09.2015
UDC: 519.68
The article was published in issue no. № 4, 2015 [ pp. 142-147 ]Abstract:The paper considers the basic concepts of fuzzy production expert systems. Fuzzy production expert systems are based on a set of rules presented in terms of linguistic variables. The authors suggest the developed Rete algorithm modification for a fuzzy rule base as a fuzzy inference tool. This modification accelerates systems operation due to a single computing of the same conditions in the rules. It also formulates the rules and conclusions in the limited natural language. The modified Rete algorithm formal decision tree model for a fuzzy production knowledge base consists of a set of vertex-conditions, vertexsolutions, the relationship between vertices and relations to describe the fuzzy expert system rules. The created algorithm processes the rules from the fuzzy rule base and converts them into the decision tree modified Rete algorithm formal model. Rete algorithm modification is different from a classical algorithm as it is used for fuzzy variables. Therefore, each stage of the algorithm includes building the decision tree vertices fuzzy truth values using fuzzy operators. This allows formulating the conditions and consequences in the rule base, as well as the solutions in the limited natural language. The same conditions are combined during decision tree construction. It accelerates decision tree processing comparing to sequential viewing of expert system rules. The paper describes an operating example of the production fuzzy expert system, which works on the basis of the proposed Rete algorithm modification. It also displays the effectiveness of the proposed method.
Аннотация:В работе рассматриваются основные понятия теории нечетких продукционных экспертных систем. Нечеткие продукционные экспертные системы базируются на наборе правил, представленном в терминах лингвистических переменных. В качестве механизма нечеткого вывода предлагается разработанная модификация алгоритма Rete для нечеткой базы правил. Разработанная модификация обеспечивает ускорение процесса работы системы за счет однократного вычисления одинаковых условий в правилах, а также позволяет формулировать правила и заключения на ограниченном естественном языке. Разработанная формальная модель дерева решений модифицированного алгоритма Rete для нечеткой продукционной базы знаний состоит из множеств вершин-условий, вершин-следствий, отношений между вершинами и отношений для описания правил нечеткой экспертной системы. Созданный алгоритм обрабатывает правила нечеткой базы правил и преобразует их в формат формальной модели дерева решений модифицированного алгоритма Rete. На каждом этапе работы алгоритма выполняется построение нечетких оценок истинности вершин дерева решений с помощью нечетких операторов, что позволяет формулировать условия и следствия в базе правил, а также результаты работы алгоритма поиска решения на ограниченном естественном языке. Также одинаковые условия объединяются при построении дерева решений, что обеспечивает ускорение обработки дерева решений по сравнению с последовательным просмотром правил экспертной системы. Рассмотрен пример работы нечеткой продукционной экспертной системы, функционирующей на основе предложенной модификации алгоритма Rete, показана эффективность предложенного метода.
Authors: Mikhailov I.S. (fr82@mail.ru) - National Research University “MPEI”, Moscow, Russia, Ph.D, Zaw Min Htike (zawgyi86@gmail.com) - National Research University “MPEI”, Moscow, Russia | |
Keywords: rete algorithm modification, rete algorithm, fuzzy rule base, fuzzy expert system |
|
Page views: 12964 |
Print version Full issue in PDF (9.58Mb) Download the cover in PDF (1.29Мб) |
Реализация процесса поиска решения по модифицированному алгоритму Rete для нечетких экспертных систем
DOI: 10.15827/0236-235X.112.142-147
Date of submission article: 09.09.2015
UDC: 519.68
The article was published in issue no. № 4, 2015. [ pp. 142-147 ]
The paper considers the basic concepts of fuzzy production expert systems. Fuzzy production expert systems are based on a set of rules presented in terms of linguistic variables. The authors suggest the developed Rete algorithm modification for a fuzzy rule base as a fuzzy inference tool. This modification accelerates systems operation due to a single computing of the same conditions in the rules. It also formulates the rules and conclusions in the limited natural language. The modified Rete algorithm formal decision tree model for a fuzzy production knowledge base consists of a set of vertex-conditions, vertexsolutions, the relationship between vertices and relations to describe the fuzzy expert system rules. The created algorithm processes the rules from the fuzzy rule base and converts them into the decision tree modified Rete algorithm formal model. Rete algorithm modification is different from a classical algorithm as it is used for fuzzy variables. Therefore, each stage of the algorithm includes building the decision tree vertices fuzzy truth values using fuzzy operators. This allows formulating the conditions and consequences in the rule base, as well as the solutions in the limited natural language. The same conditions are combined during decision tree construction. It accelerates decision tree processing comparing to sequential viewing of expert system rules. The paper describes an operating example of the production fuzzy expert system, which works on the basis of the proposed Rete algorithm modification. It also displays the effectiveness of the proposed method.
Mikhailov I.S. (fr82@mail.ru) - National Research University “MPEI”, Moscow, Russia, Ph.D, Zaw Min Htike (zawgyi86@gmail.com) - National Research University “MPEI”, Moscow, Russia
Ссылка скопирована!
Permanent link: http://swsys.ru/index.php?page=article&id=4083&lang=en |
Print version Full issue in PDF (9.58Mb) Download the cover in PDF (1.29Мб) |
The article was published in issue no. № 4, 2015 [ pp. 142-147 ] |
The article was published in issue no. № 4, 2015. [ pp. 142-147 ]
Perhaps, you might be interested in the following articles of similar topics:Perhaps, you might be interested in the following articles of similar topics: