Авторитетность издания
ВАК - К1
RSCI, ядро РИНЦ
Добавить в закладки
Следующий номер на сайте
№2
Ожидается:
16 Июня 2024
Анализ и обработка данных для прогнозирования состояния больных
Data analysis and processing to predict patients’ health status
Дата подачи статьи: 24.12.2015
УДК: 004.658.6
Статья опубликована в выпуске журнала № 1 за 2016 год. [ на стр. 180-185 ]Аннотация:С развитием информационных технологий все больше внимания уделяется автоматизированным способам анализа и обработки информации. В данной статье описаны два связанных способа обработки данных: многофакторный анализ данных с использованием метода главных компонент и нейронные сети. В ходе работы возникла необходимость обрабатывать данные об анализах пациентов и на их основе предсказывать значение целевого параметра во времени. Предсказание целевого параметра упрощает процесс лечения за счет более оперативного принятия врачом решения о способе лечения. Использованный метод многофакторного анализа (метод главных компонент) позволил сократить размерность задачи, выявил требования к формированию обучающей и тестовой выборок для построения математической модели на основе нейронной сети, а также дал возможность определять ключевые факторы, которые должны использоваться в качестве входных параметров в нейросетевой модели. В работе представлены графики нагрузок и графическое отображение корреляции между значениями анализов пациентов, сделаны выводы о силе корреляции между значениями анализов. В дальнейшем были проведены обучение нейронной сети на обучающей выборке (количество экспериментов для обучения – около 200) и проверка качества обучения на тестовой выборке (количество экспериментов в тестовой выборке – около 50). В работе приведено сравнение расчетных и экспериментальных данных, определена ошибка работы нейронной сети, которая составила 8 %. Для реализации вышеописанных методов разработано ПО на языке программирования C# в среде разработки Visual Studio.
Abstract:Development of information technologies made people to pay more attention to automated methods of data analysis and processing. This article describes two interconnected methods for data processing: multifactor data analysis using the major components method and neural networks. The work showed a necessity to process data from patients’ tests and to predict a target parameter value through time based on this data. Prediction of a certain target parameter makes medical treatment easier due to doctor’s faster decision-making regarding a way of treatment. The authors used a multifactor analysis method (major components method). It allowed decreasing a problem scale, showed requirements to educational and test sets to design a mathematical model based on a neural network. It also allowed identifying key factors, which can be used as initial parameters for a neural-network model. The article contains load diagrams and graphical interpretation of a correlation between patients’ test values, as well as authors’ conclusions about correlation. Further, a neural network trained using a training sample (an amount of experiments for training was about 200). Training quality was controlled using a test set (an amount of experiments for a test was about 50). The article also contains a comparison of calculated and experimental data. An error of the neural network is 8 %. The authors developed software using C# and Visual Studio to implement the described methods.
Авторы: Иванов С.И. (patephon2009@yandex.ru) - Российский химико-технологический университет им. Д.И. Менделеева, г. Москва, Россия, кандидат технических наук, Гордиенко М.Г. (chemcom@muctr.ru) - Международный учебно-научный центр Российского химико-технологического университета им. Д.И. Менделеева (ведущий научный сотрудник), Москва, Россия, кандидат технических наук, Матасов А.В. (mats@muctr.ru) - Российский химико-технологический университет им. Д.И. Менделеева, г. Москва, Россия, кандидат технических наук, Меньшутина Н.В. (chemcom@muctr.ru) - Российский химико-технологический университет им. Д.И. Менделеева (профессор), г. Москва, Россия, доктор технических наук | |
Ключевые слова: разработка по, анализ данных, обработка данных, нейронные сети, многофакторный анализ |
|
Keywords: software development, data analysis, data processing, neural network, multivariate analysis |
|
Количество просмотров: 16692 |
Версия для печати Выпуск в формате PDF (8.31Мб) Скачать обложку в формате PDF (1.24Мб) |
Анализ и обработка данных для прогнозирования состояния больных
DOI: 10.15827/0236-235X.113.180-185
Дата подачи статьи: 24.12.2015
УДК: 004.658.6
Статья опубликована в выпуске журнала № 1 за 2016 год. [ на стр. 180-185 ]
С развитием информационных технологий все больше внимания уделяется автоматизированным способам анализа и обработки информации. В данной статье описаны два связанных способа обработки данных: многофакторный анализ данных с использованием метода главных компонент и нейронные сети. В ходе работы возникла необходимость обрабатывать данные об анализах пациентов и на их основе предсказывать значение целевого параметра во времени. Предсказание целевого параметра упрощает процесс лечения за счет более оперативного принятия врачом решения о способе лечения. Использованный метод многофакторного анализа (метод главных компонент) позволил сократить размерность задачи, выявил требования к формированию обучающей и тестовой выборок для построения математической модели на основе нейронной сети, а также дал возможность определять ключевые факторы, которые должны использоваться в качестве входных параметров в нейросетевой модели. В работе представлены графики нагрузок и графическое отображение корреляции между значениями анализов пациентов, сделаны выводы о силе корреляции между значениями анализов. В дальнейшем были проведены обучение нейронной сети на обучающей выборке (количество экспериментов для обучения – около 200) и проверка качества обучения на тестовой выборке (количество экспериментов в тестовой выборке – около 50). В работе приведено сравнение расчетных и экспериментальных данных, определена ошибка работы нейронной сети, которая составила 8 %. Для реализации вышеописанных методов разработано ПО на языке программирования C# в среде разработки Visual Studio.
Иванов С.И. (patephon2009@yandex.ru) - Российский химико-технологический университет им. Д.И. Менделеева, г. Москва, Россия, кандидат технических наук, Гордиенко М.Г. (chemcom@muctr.ru) - Международный учебно-научный центр Российского химико-технологического университета им. Д.И. Менделеева (ведущий научный сотрудник), Москва, Россия, кандидат технических наук, Матасов А.В. (mats@muctr.ru) - Российский химико-технологический университет им. Д.И. Менделеева, г. Москва, Россия, кандидат технических наук, Меньшутина Н.В. (chemcom@muctr.ru) - Российский химико-технологический университет им. Д.И. Менделеева (профессор), г. Москва, Россия, доктор технических наук
Ключевые слова: разработка по, анализ данных, обработка данных, нейронные сети, многофакторный анализ
Ссылка скопирована!
Постоянный адрес статьи: http://swsys.ru/index.php?page=article&id=4129&lang=&lang=&like=1 |
Версия для печати Выпуск в формате PDF (8.31Мб) Скачать обложку в формате PDF (1.24Мб) |
Статья опубликована в выпуске журнала № 1 за 2016 год. [ на стр. 180-185 ] |
Статья опубликована в выпуске журнала № 1 за 2016 год. [ на стр. 180-185 ]
Возможно, Вас заинтересуют следующие статьи схожих тематик:Возможно, Вас заинтересуют следующие статьи схожих тематик:
- Разработка базы данных и конвертера для извлечения и анализа специализированных данных, получаемых с медицинского аппарата
- Методы автоматической классификации текстов
- Учебная распределенная система управления мобильной колесной платформой с использованием видео- и сенсорной информации
- Решение задачи прогнозирования с использованием нейронных сетей прямого распространения на примере построения прогноза роста курса акций
- Нейросетевая модель прогнозирования временных рядов финансовых данных
Назад, к списку статей