Авторитетность издания
ВАК - К1
RSCI, ядро РИНЦ
Добавить в закладки
Следующий номер на сайте
№3
Ожидается:
16 Сентября 2024
Использование вероятностного вывода в слабоформализованных базах знаний
Probabilistic inference in weakly formalized knowledge bases
Дата подачи статьи: 01.03.2016
УДК: 004.89
Статья опубликована в выпуске журнала № 3 за 2016 год. [ на стр. 10-14 ]Аннотация:В статье рассматривается процесс вероятностного вывода в слабоформализованных базах знаний. В качестве такой базы выбрана графическая модель представления знаний – семантическая сеть. Выбор обусловлен удобством представления автоматически извлеченных данных в виде графа со связями, а также удобством дальнейшего использования (чтения, изменения и поиска ошибок) данного графа. Также проводится сравнение широко используемого на данный момент продукционного подхода с предложенным, указываются основные недостатки продукционного подхода, которые необходимо учитывать при разработке подобных систем извлечения знаний. Целью исследования является извлечение новых знаний из автоматически полученных данных. Для достижения этой цели на графических моделях обычно производится логический вывод. Поскольку модель, а также способ получения данных (в данном случае автоматически или полуавтоматически) накладывают ограничения на механизм вывода, алгоритм вынужден работать в условиях неопределенности. Отсюда следует, что стандартные механизмы логического вывода, предусмотренные для данной модели, становятся неактуальными. В статье предлагается использовать вероятностный вывод и, следовательно, вероятностный язык логического программирования для его реализации. Также делается сравнение нескольких существующих языков вероятностного логического программирования, таких как PRISM, ICL и ProbLog. По результатам сравнения производится выбор языка вероятностного программирования для осуществления вывода. В качестве такого языка выбран язык ProbLog (в частности система ProbLog2), являющийся вероятностным расширением языка Prolog.
Abstract:The article introduces the process of probabilistic inference in weakly formalized knowledge bases. Semantic network is chosen as a graphical model of knowledge representation due to a convenient representation of automatically extracted data as a graph with links. The paper also contains a comparison of widely used production model approach with the proposed one. The authors describe main disadvantages of a production model approach that should be considered for developing such knowledge extraction systems. The aim of the work is new knowledge extraction from an automatically built knowledge base. Usually logical inference is used to achieve this aim in graphical models. In our case a domain model as well as a process of knowledge building (in particular by automatic or semi-automatic methods) restrict logical inference mechanism, so this algorithm is forced to work in conditions of uncertainty. Thus, standard logical inference algorithms provided for such model become irrelevant. The article proposes using probabilistic inference for the task and consequently using probabilistic inference programming language. The paper contains a comparison of several modern probabilistic logic programming languages like PRISM, ICL and ProbLog. The authors select a probabilistic logic programming language based on the results of this comparison. To implement probabilistic inference in a weakly formalized knowledge base we have selected ProbLog language (ProbLog2 in particular) that is a probability extension of Prolog.
Авторы: Полещук Е.А. (eapoleschuk@corp.ifmo.ru) - Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (Университет ИТМО) (аспирант), Санкт-Петербург, Россия, Платонов А.В. (avplatonov@corp.ifmo.ru) - Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (Университет ИТМО) (аспирант), Санкт-Петербург, Россия | |
Ключевые слова: вероятностный вывод, семантические сети, слабоформализованные базы знаний, problog, вероятностное логическое программирование, неопределенность данных, неопределенность отношений |
|
Keywords: probabilistic inference, semantic network, weakly formalized knowledge bases, problog, probabilistic logic programming, data uncertainty, relationships uncertainty |
|
Количество просмотров: 13737 |
Версия для печати Выпуск в формате PDF (6.81Мб) Скачать обложку в формате PDF (0.36Мб) |
Использование вероятностного вывода в слабоформализованных базах знаний
DOI: 10.15827/0236-235X.115.010-014
Дата подачи статьи: 01.03.2016
УДК: 004.89
Статья опубликована в выпуске журнала № 3 за 2016 год. [ на стр. 10-14 ]
В статье рассматривается процесс вероятностного вывода в слабоформализованных базах знаний. В качестве такой базы выбрана графическая модель представления знаний – семантическая сеть. Выбор обусловлен удобством представления автоматически извлеченных данных в виде графа со связями, а также удобством дальнейшего использования (чтения, изменения и поиска ошибок) данного графа. Также проводится сравнение широко используемого на данный момент продукционного подхода с предложенным, указываются основные недостатки продукционного подхода, которые необходимо учитывать при разработке подобных систем извлечения знаний. Целью исследования является извлечение новых знаний из автоматически полученных данных. Для достижения этой цели на графических моделях обычно производится логический вывод. Поскольку модель, а также способ получения данных (в данном случае автоматически или полуавтоматически) накладывают ограничения на механизм вывода, алгоритм вынужден работать в условиях неопределенности. Отсюда следует, что стандартные механизмы логического вывода, предусмотренные для данной модели, становятся неактуальными. В статье предлагается использовать вероятностный вывод и, следовательно, вероятностный язык логического программирования для его реализации. Также делается сравнение нескольких существующих языков вероятностного логического программирования, таких как PRISM, ICL и ProbLog. По результатам сравнения производится выбор языка вероятностного программирования для осуществления вывода. В качестве такого языка выбран язык ProbLog (в частности система ProbLog2), являющийся вероятностным расширением языка Prolog.
Полещук Е.А. (eapoleschuk@corp.ifmo.ru) - Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (Университет ИТМО) (аспирант), Санкт-Петербург, Россия, Платонов А.В. (avplatonov@corp.ifmo.ru) - Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (Университет ИТМО) (аспирант), Санкт-Петербург, Россия
Ссылка скопирована!
Постоянный адрес статьи: http://swsys.ru/index.php?page=article&id=4171&lang=&lang=&like=1 |
Версия для печати Выпуск в формате PDF (6.81Мб) Скачать обложку в формате PDF (0.36Мб) |
Статья опубликована в выпуске журнала № 3 за 2016 год. [ на стр. 10-14 ] |
Статья опубликована в выпуске журнала № 3 за 2016 год. [ на стр. 10-14 ]
Возможно, Вас заинтересуют следующие статьи схожих тематик:Возможно, Вас заинтересуют следующие статьи схожих тематик: