Одной из причин нарушения безопасной эксплуатации технологических установок и оборудования предприятий и потерь от простоя и аварий являются ошибки персонала, управляющего технологическим процессом. Аварии приводят к гибели людей, нарушению технологических регламентов, загрязнению окружающей среды. В связи с этим необходимо постоянно поддерживать и повышать уровень подготовки операторов, для чего применяются либо сложные системы тестов и экзаменов, либо аппаратно-программные тренажеры. Представляется, что применение тренажеров является более эффективным методом обучения, способствующим выработке и закреплению моторных навыков при работе со SCADA-системами и АСУ технологическим процессом.
В настоящий момент на рынке тренажеров много предложений готовых решений для различных задач, например [1]. Однако большинство из них при довольно высокой стоимости (так, цена статического тренажера автомобильного крана – 750 000 руб.) требуют доработки и не учитывают специфику решаемых задач, например, в области тепломеханических, химико-технологических установок. Поэтому целесообразно сотрудникам предприятий самим создавать тренажеры, что трудновыполнимо из-за отсутствия предложений программных систем для создания тренажерных комплексов, так как разработчики тренажеров не распространяют используемый инструментарий (за исключением научных разработок), и отсутствия на предприятиях квалифицированных специалистов, имеющих знания и практические навыки в об- ласти моделирования, программирования, надеж- ности и технологических процессов.
Таким образом, актуальна разработка инструментальных программных систем, обеспечивающих создание тренажерных комплексов непрограммирующими пользователями и включающих подсистемы моделирования технологических процессов, в частности, для тепломеханических, химико-технологических установок.
Программный комплекс «АСТ»
Функции и назначение. Для обеспечения сотрудников предприятий возможностью самостоятельно создавать тренажеры для персонала тепломеханических, химико-технологических установок был разработан специализированный программный комплекс (СПК).
Особенностью СПК является использование обобщенной модели технической системы (ТС) [2], являющейся основой для описания моделируемых установок с помощью модифицированных цветных сетей Петри [3]. Реализованная модификация сетей Петри позволяет создавать иерархические модели, получать в качестве атрибутов меток данные с ОРС-сервера и прогнозировать состояния моделируемой ТС [4].
Основные функции СПК:
- возможность создания моделей сложных ТС непрограммирующим пользователем, ограниченная только вычислительной мощностью исполь- зуемых компьютеров, так как применяемый для описания модели язык цветных сетей Петри с приоритетами равен по мощности машинам Тьюрин- га [5, 6];
- визуальное моделирование технологического процесса как в форме сетевого представле- ния в виде цветных сетей Петри, так и в форме мнемосхем;
- прогнозирование значений параметров технологического процесса на основе статистического прогнозирования, методов последовательных уступок и взвешивания критериев [7–9];
- поддержка оператора при принятии решений путем информационной и цветовой индикаций отклонения значений параметров технологического процесса от допустимых.
Архитектура СПК, реализующая данные функции, представлена на рисунке 1.
Рассмотрим основные модули и их назначение.
Подсистема создания модели обеспечивает создание статической и динамической моделей ТС. Для создания статической модели, представляющей собой статическую схему (мнемосхему или чертеж), может быть применен как встроенный графический редактор, так и внешний, например AutoCad. В частности, использование объектной модели AutoCad обеспечивает доступ ко всем элементам как чертежа, так и самой оболочки AutoCad, что позволяет использовать уже готовые чертежи и схемы. Динамическая модель создается с помощью редактора сетей Петри, обеспечивающего наложение вершин и переходов на статическую модель, а также задание источника данных для модели (внешний OPC-сервер или его имитация).
БД моделей обеспечивает хранение и повторное использование разработанных ранее моделей. В состав каждой модели входят сетевая модель ТС на языке сетей Петри (динамическая модель ТС), графические схемы элементов ТС (статическая модель), список подключаемых к сетевой модели па- раметров OPC-сервера (или имитатора данных), последние значения параметров ТС (количество определяется настройками модели, от 1 до 1000). Также БД содержит стандартизированные согласно ГОСТ 21.101-2013 и ГОСТ 27833-88 изображения элементов ТС, используемые для создания графических схем.
Подсистема имитационного моделирования обеспечивает интерпретацию модели с учетом данных от OPC-сервера. При получении данных от OPC-сервера интерпретатор модифицированной сети Петри обеспечивает перемещение меток и вычисление их параметров, а также производит «связывание» меток модели и параметров OPC-клиента, определение выполнения условий перехода меток и вычисление атрибутов меток в соответствии с функциями, определенными в сетевой модели ТС.
Библиотека математических модулей содержит алгоритмы для работы с матрицами, метод наименьших объемов и др.
Модуль визуализации результатов моделирования обеспечивает обновление мнемосхемы в соответствии с изменением состояния модели, а также построение графиков изменения параметров.
Модуль поддержки принятия решений обеспечивает построение деревьев сценариев (ДС), частичных деревьев отказов (ДО), деревьев достижимых маркировок (ДДМ) и экспертную оценку сценариев по уровню безопасности [8].
Построение ДС и ДДМ может автоматически производиться при выходе параметра за допустимые пределы.
Модуль имитации ОРС-сервера является источником данных для модели, обеспечивающим генерацию набора аналоговых и дискретных сигналов от датчиков оборудования.
ОРС-сервер – реальный источник данных, при реализации ОРС-клиента для этого сервера в СПК использовались контроллеры NL. Синхронизация состояния модели осуществляется только в соответствии с параметрами датчиков и контроллеров, время в модели не используется. OPC-клиент СПК может получать данные с нескольких OPC-серверов.
Модуль прогнозирования обеспечивает использование статистических методов (взвешивания критериев и метод уступок) и нейронной сети для прогнозирования состояния модели ТС.
Методика создания компьютерного тренажера на основе СПК представляет собой следующую последовательность шагов.
1. Создание статической модели ТС с помощью графического средства моделирования (AutoCad или встроенного графического редактора) в форме схемы, обеспечивающей наглядное отображение структуры системы.
· Модель отражает объекты Pk, события Тj и параметры Ai системы, где k – количество объектов, j – количество событий, i – количество параметров:
- объекты ТС имеют параметры, соответствующие значениям атрибутов Ai метки mn, находящейся в позиции Pk; n определяет число меток, принадлежащих (находящихся в) позиции Pk, значения которых могут изменяться с течением времени в зависимости от данных, получаемых от ОРС-сервера (при отсутствии ОРС-сервера используется модуль генерации данных);
- событие Тj происходит при выполнении условий на переход меток mn между объектами Pk;
- значения параметров объектов ТС поступают с первичных приборов или контроллеров на ОРС-сервер и затем могут быть использованы в модели как значения атрибутов Ai меток mn ;
- события происходят или не происходят в соответствии с условиями дуг I, O, которые определены в модели выражениями входных и выходных дуг перехода Тj;
- все события в модели происходят в соответствии с порядком функционирования вложенных сетей NF.
· Модель ТС является иерархической; количество уровней зависит от сложности ТС и поставленной задачи. Разделение ТС на объекты доста- точно условно и зависит от постановки задачи, например, при анализе технологической линии ее объектами могут считаться отдельные установки и станки, транспортные и загрузочные устройства. В свою очередь, станки и загрузочные устройства также могут считаться ТС и при оценке их надежности должны быть разделены на элементы − узлы, блоки, которые, в свою очередь − на детали и т.д.
2. На основе статической модели создается динамическая модель в форме сети Петри, описывающая процесс функционирования ТС (рис. 2):
- задается начальное состояние системы;
- задаются интервалы номинальных, допустимых и недопустимых значений параметров;
- задаются функции, определяющие значения атрибутов Ai меток;
- выполняются активные переходы Тj.
3. Настраивается (задается) ОРС-сервер или имитирующий его модуль.
Успешное завершение данных шагов позволяет получить тренажер, процесс функционирования которого представляет собой взаимодействие динамической модели (представленной в виде сети Петри) и ОРС-сервера, в ходе которого выполняются следующие действия.
1. Обмен данными атрибутов меток и ОРС-сервера во время выполнения переходов. Предыдущие значения атрибутов Ai сохраняются, количество сохраненных значений определяется настройками модели.
2. Перерасчет значений атрибутов меток.
3. Прогноз значений атрибута меток (то есть появляется информация о будущих событиях в модели).
4. При выходе значения параметра Ai объекта Pk ТС за допустимые или регламентируемые границы ZAiPk определение последовательности произошедших событий:
- определяются наименования и значения параметров ТС, изменение которых влияет на значение атрибута Ai метки mn элемента модели ТС;
- определяются значения параметров объектов модели ТС, достижимые из заданного состояния; выбирается нужное состояние модели;
- определяется последовательность событий, приводящих модель ТС в это состояние.
5. При нарушении регламентируемой последовательности событий определение:
- условия, необходимого, но не выполненного для возникновения события;
- условий возникновения нерегламентируемого события;
- параметров объектов системы, значения которых влияют на выполнение данного условия.
Обучение и контроль знаний оператора на компьютерных тренажерах заключаются в изучении структурных связей между объектами ТС, за- действованными в технологическом процессе (например, при передаче вращающего момента, жидкости) с последующей выработкой навыков поведения в аварийных ситуациях. Применение компьютерного тренажера, обеспечивающего прогнозирование значений параметров объектов ТС и определение причин инцидентов (и аварийных си- туаций), повышает эффективность обучения за счет оперативного обнаружения ошибок управле- ния. Использование аварийных сценариев при работе на тренажере позволяет обучаемому персоналу получить навыки устранения подобных событий. Принудительное задание аварийных значений параметров может быть произведено как при составлении исходного задания оператору, так и во время работы тренажера. При составлении задания также могут быть определены условия возникновения аварийной ситуации – аварийное отключение, разгерметизация и т.д. Оценка действий оператора задается при настройке СПК и определяется тем, какой именно параметр и насколько не соответствует регламентируемым значениям.
Программная реализация СПК осуществлена в среде Borland Delphi.
Примеры применения СПК
С помощью описанной методики были созданы учебные тренажерные комплексы с модулем поддержки принятия решений для контроля ректизол-процесса при производстве сжиженного природного газа, а также послеремонтного испытания компрессоров и лазерного измерительного комплекса.
Ректизол-процесс – абсорбция сероводорода, сераорганических соединений и СО2 метанолом при низких температурах и повышенных давлениях; является частью технологического процесса при производстве сжиженного природного газа и применяется для очистки природного газа от H2S и СО2. Технологическая схема включает две ступени: газ при давлении 20–25 атм. и температуре –35 °С поступает в абсорбер, орошаемый увлажненным холодным метанолом, и десорбер H2S.
На рисунке 3 приведен пример экрана программного тренажера оператора ректизол-процесса.
Основные функции тренажера:
- управление компрессором, расходом сжиженного природного газа, температурой в абсорбере и десорбере, уровнем метанола в сборниках;
- построение графиков значений параметров процесса;
- вычисление значений параметров модели в соответствии с управлением оператора;
- контроль допустимых эксплуатационных параметров оборудования;
- создание отчетов о технологическом процессе и действиях оператора.
На рисунке 2 приведена структура сети Петри для моделирования ректизол-процесса, узлы сети соответствуют основным элементам мнемосхемы.
Тренажер для автоматизированного испытания компрессоров разрабатывался для Ростовского вагоноремонтного завода. Основные функции тренажера:
- вычисление значений параметров модели в соответствии с управлением оператора;
- мониторинг испытаний;
- автоматическая оценка действий обучаемого персонала на основе определенных критериев;
- построение графиков значений параметров процесса;
- управление испытаниями;
- контроль допустимых эксплуатационных параметров оборудования;
- создание отчетов о проведенных испытаниях.
На рисунке 4 приведен пример экрана програм- много тренажера для автоматизированного испытания компрессоров: пример мнемосхемы со значениями приборов при моделировании процесса, график выбранного параметра (давление) значения, а также информация об операторе и дополнительные параметры испытания.
В заключение отметим, что обучение ответственным технологическим операциям до того, как обучаемый оператор столкнется с ними на практике, способствует сохранению оборудования от возможных последствий ошибок персонала и повышает качество выполняемых работ. Одним из способов обучения является использование программно-аппаратных тренажерных комплексов, обеспечивающих выработку зрительно-моторных навыков при работе на оборудовании.
При общей высокой стоимости готовых тренажерных комплексов перспективны разработка и применение специальных инструментальных средств, позволяющих специалистам предприятий самостоятельно создавать программные тренажеры с учетом специфики производственных процессов.
СПК «АСТ» позволяет использовать формализм цветных сетей Петри для моделирования ТС и обеспечивает следующее: создание статической модели ТС в виде мнемосхем, схем и чертежей; создание динамической модели ТС в виде сети Петри, совмещаемой со схемами; имитацию взаимодействия или реальное использование OPC-серверов; прогнозирование параметров ТС и построение деревьев событий. СПК «АСТ» апробирован при создании тренажеров для контроля ректизол-процесса при производстве сжиженного природного газа и послеремонтного испытания компрессоров и лазерного измерительного комплекса.
Использование СПК «АСТ» и создаваемых с его помощью тренажеров позволяет повысить уровент подготовки персонала, а значит, надежность и безопасность технологических процессов.
Литература
1. Компания SIKE. Системный интегратор, разработчик информационных и обучающих систем. URL: http://sike.ru/articles/kompyuternyiy-trenazher-sike-vyiplavka-stali-v-konvertere/ (дата обращения: 01.11.2015).
2. Берман А.Ф., Николайчук О.А., Вильвер П.Ю. Моделирование функционирования сложных технологических комплексов на основе модифицированной сети Петри // Современные технологии. Системный анализ. Моделирование. 2009. № 4. С. 23–29.
3. Дубинин В.Н., Зинкин С.А. Проектирование вычислительных систем и сетей на основе сетевых формализмов. Кн. 1: Сетевые технологии проектирования и реализации распределенных вычислительных систем на программно-аппаратных платформах локальных и глобальных сетей Ethernet/Internet. Пенза: Изд-во ПГУ, 1998. 322 с.
4. Вильвер П.Ю., Протасов А.В. Имитационное моделирование сложных динамических систем с использованием сетей Петри // Мехатроника, автоматизация, управление. 2011. № 7. С. 35–39.
5. Jensen K. Colored Petri nets – basic concepts, ana- lysis methods and practical use. Springer-Verlag, 1997, vol. 1–3, 673 p.
6. Котов В.Е. Сети Петри. М.: Наука, 1984. 160 с.
7. Подиновский В.В., Гаврилов В.М. Оптимизация по последовательно применяемым критериям. М.: Сов. радио, 1975. 192 с.
8. Орлов А.И. Теория принятия решений: учеб. пособие. М.: Март, 2004. 656 с.
9. Малтугуева Г.С., Юрин А.Ю. Алгоритм коллективного выбора на основе обобщенных ранжировок для поддержки принятия решений // Современные технологии. Системный анализ. Моделирование. 2009. № 3. С. 57–62.