Journal influence
Higher Attestation Commission (VAK) - К1 quartile
Russian Science Citation Index (RSCI)
Bookmark
Next issue
№3
Publication date:
16 September 2025
Optimization problems solution based on superelement modeling of oil-field development
Date of submission article: 30.03.2017
UDC: 622.276.1/4
The article was published in issue no. № 3, 2017 [ pp. 384-391 ]Abstract:Oil fields of Russia are mainly developed by waterflooding. Most of them are in the 3rd or 4th stage of development. Consequently, the water cutting of well production is 80–90% or more. In these conditions, in order to optimize the development of deposits, oil engineers try to reduce water production and injection while maintaining or increasing oil production. For this purpose, there are the tasks of field development control and regulation. These problems are solved using various mathematical models. This paper considers a superelement mathematical waterflooding model based on a two-phase filtration model for weakly compressible immiscible liquids (oil and water) in an elastic bed under the Darcy law. The system of differential equations for pressure and saturation is approximated on Voronoi diagram in an entirely explicit manner. The size of the superelements is comparable to the distance between the wells. This allows performing calculations without using special software. To solve inverse problems (determine model coefficients or optimize development parameters), the work uses Newton's method and the conjugate gradient method. In the classical setting of an inverse problem, the optimization theory methods should be applied directly to the mathematical model of the process under study. However, when solving oilfield development problems, the number of optimization parameters can be large, and the complexity of the mathematical model is quite high. Therefore, the application of optimization theory methods directly to a mathematical model can be very time-consuming. To overcome this contradiction, it is proposed to build statistical dependencies of the development indices on the required parameters using a mathematical model of waterflooding, and then to apply optimization theory methods no longer to the mathematical model, but to the statistical dependencies obtained. To illustrate this approach, we consider the solution of the problem of model adaptation to absolute permeability. It is established that the application of the conjugate gradient method directly to the waterflooding model gives an error in determining the permeability of 11,8 %. Applying the same method to a statistical dependence of a model adaptation error (on accumulated production and injection of oil and water) on the logarithm of permeability gives an error in determining permeability of only a little more, it is 15 %.
Аннотация:Нефтяные месторождения России разрабатываются преимущественно с помощь заводнения. Большинство из них находятся на третьей или четвертой стадии разработки. Следовательно, обводненность продукции скважин составляет 80–90 % и более. В этих условиях с целью оптимизации разработки месторождений инженеры-нефтяники стараются уменьшить добычу и закачку воды при сохранении или увеличении добычи нефти. Для этого решаются задачи контроля и регулирования разработки месторождения с использованием различных математических моделей. В данной работе рассматривается суперэлементная математическая модель заводнения, основанная на модели двухфазной фильтрации слабосжимаемых несмешивающихся жидкостей (нефти и воды) в упругом пласте по закону Дарси. Система дифференциальных уравнений для давления и насыщенности аппроксимирована на сетке Вороного полностью явным образом. Размеры суперэлементов сопоставимы с расстоянием между скважинами. Это позволяет проводить вычисления без использования специального ПО. Для решения обратных задач (определения коэффициентов модели или оптимизации параметров разработки) в работе используются метод Ньютона и метод сопряженных градиентов. В классической постановке обратной задачи методы теории оптимизации должны применяться непосредственно к математической модели исследуемого процесса. Однако в случае решения задач разработки нефтяных месторождений количество параметров для оптимизации может быть очень велико, а сложность математической модели довольно высока, поэтому применение методов теории оптимизации непосредственно к математической модели может быть очень трудоемким. Для преодоления этого противоречия предлагается с помощью математической модели заводнения строить статистические зависимости показателей разработки от искомых параметров, а затем применять методы теории оптимизации уже не к математической модели, а к полученным статистическим зависимостям. Для иллюстрации такого подхода рассматривается решение задачи адаптации модели по абсолютной проницаемости. Установлено, что применение метода сопряженных градиентов непосредственно к модели заводнения дает ошибку в определении проницаемости 11,8 %. Применение того же метода к статистической зависимости ошибки адаптации модели (по накопленной добыче и закачке нефти и воды) от логарифма проницаемости дает ошибку в определении проницаемости лишь немногим больше – 15 %.
Authors: I.V. Afanaskin (ivan@afanaskin.ru) - Federal State Institution "Scientific Research Institute for System Analysis of the Russian Academy of Sciences" (SRISA RAS) (Head of Group), Moscow, Russia, Ph.D, P.V. Yalov (petryalov@gmail.com) - Federal State Institution "Scientific Research Institute for System Analysis of the Russian Academy of Sciences" (SRISA RAS) (Engineer), Moscow, Russia, Giatsintov A.M. (algts@inbox.ru) - SRISA RAS, Moscow, Russia, A.V. Roditelev (avrod_94@mail.ru) - Federal State Institution "Scientific Research Institute for System Analysis of the Russian Academy of Sciences" (SRISA RAS) (Leading Programmer), Moscow, Russia | |
Keywords: inverse problems, voronoy grid, surrogate model, superelement model, prompt modeling, express modeling, waterflooding |
|
Page views: 11258 |
PDF version article Full issue in PDF (21.91Mb) Download the cover in PDF (0.59Мб) |
Решение задач оптимизации при суперэлементном моделировании разработки нефтяных месторождений
DOI: 10.15827/0236-235X.119.384-391
Date of submission article: 30.03.2017
UDC: 622.276.1/4
The article was published in issue no. № 3, 2017. [ pp. 384-391 ]
Oil fields of Russia are mainly developed by waterflooding. Most of them are in the 3rd or 4th stage of development. Consequently, the water cutting of well production is 80–90% or more. In these conditions, in order to optimize the development of deposits, oil engineers try to reduce water production and injection while maintaining or increasing oil production. For this purpose, there are the tasks of field development control and regulation. These problems are solved using various mathematical models.
This paper considers a superelement mathematical waterflooding model based on a two-phase filtration model for weakly compressible immiscible liquids (oil and water) in an elastic bed under the Darcy law. The system of differential equations for pressure and saturation is approximated on Voronoi diagram in an entirely explicit manner. The size of the superelements is comparable to the distance between the wells. This allows performing calculations without using special software. To solve inverse problems (determine model coefficients or optimize development parameters), the work uses Newton's method and the conjugate gradient method. In the classical setting of an inverse problem, the optimization theory methods should be applied directly to the mathematical model of the process under study. However, when solving oilfield development problems, the number of optimization parameters can be large, and the complexity of the mathematical model is quite high. Therefore, the application of optimization theory methods directly to a mathematical model can be very time-consuming. To overcome this contradiction, it is proposed to build statistical dependencies of the development indices on the required parameters using a mathematical model of waterflooding, and then to apply optimization theory methods no longer to the mathematical model, but to the statistical dependencies obtained.
To illustrate this approach, we consider the solution of the problem of model adaptation to absolute permeability. It is established that the application of the conjugate gradient method directly to the waterflooding model gives an error in determining the permeability of 11,8 %. Applying the same method to a statistical dependence of a model adaptation error (on accumulated production and injection of oil and water) on the logarithm of permeability gives an error in determining permeability of only a little more, it is 15 %.
I.V. Afanaskin (ivan@afanaskin.ru) - Federal State Institution "Scientific Research Institute for System Analysis of the Russian Academy of Sciences" (SRISA RAS) (Head of Group), Moscow, Russia, Ph.D, P.V. Yalov (petryalov@gmail.com) - Federal State Institution "Scientific Research Institute for System Analysis of the Russian Academy of Sciences" (SRISA RAS) (Engineer), Moscow, Russia, Giatsintov A.M. (algts@inbox.ru) - SRISA RAS, Moscow, Russia, A.V. Roditelev (avrod_94@mail.ru) - Federal State Institution "Scientific Research Institute for System Analysis of the Russian Academy of Sciences" (SRISA RAS) (Leading Programmer), Moscow, Russia
Ссылка скопирована!
Permanent link: http://swsys.ru/index.php?page=article&id=4306&lang=en |
PDF version article Full issue in PDF (21.91Mb) Download the cover in PDF (0.59Мб) |
The article was published in issue no. № 3, 2017 [ pp. 384-391 ] |
The article was published in issue no. № 3, 2017. [ pp. 384-391 ]
Perhaps, you might be interested in the following articles of similar topics:Perhaps, you might be interested in the following articles of similar topics:
- Нейро-нечеткий метод снижения чувствительности решения обратных задач к вариациям данных
- Нечеткий фильтр калмана в структуре алгоритма решения обратных задач для экономических объектов
- Варианты построения алгоритма поиска решения обратных задач с применением нейронных сетей
Back to the list of articles