Journal influence
Higher Attestation Commission (VAK) - К1 quartile
Russian Science Citation Index (RSCI)
Bookmark
Next issue
№2
Publication date:
16 June 2024
Decision support system to determine a nosological entity of hepatitis
Date of submission article: 04.08.2017
UDC: 519.68
The article was published in issue no. № 4, 2017Abstract:The article considers the problem of determining a nosological entity of hepatitis to reduce the number of clinical errors in the assessment of medical history and clinical analysis. This problem might be solved based on iterative learning in reference situations using software that model specialists’ experience. A decision support system has a task that consists of sixty-five input factors such as tests and anamnesis and four output values that characterize the type of hepatitis. The sample of input factors is based on recommendations for a clinical diagnosis of the type of hepatitis. Nosological entities correspond to the international nosology requirements. The proposed algorithm is based on a modified iterative Kaczmarz method for solving systems of linear equations in a neural network. Solving includes calculation of weighted coefficients. This method allows performing calculations with efficient using of some computational capabilities. The system powered by Embarcadero Delphi. A database server is FirebirdSQL. The database contains 280 reference images involved in training of the system. The total amount of iterations for forming the basis of weighted coefficients is 260. The training error is 0.2–0.3. Applicability of images with the maximum error allows reducing the error and the total amount of images. The system has been clinically tested on the data of 100 real patients, the correlation index is 0.7. The developed system allows increasing the treatment efficacy in some cases. The proposed approach might be used to assess efficacy of hepatitis treatment.
Аннотация:Статья посвящена решению проблемы определения нозологической формы гепатита с целью снижения ошибок при оценке данных анамнеза и клинических анализов. Проблема решается с помощью ПО, моделирующего опыт специалистов, путем итерационного обучения на эталонных ситуациях. Поставленная перед системой поддержки принятия решений задача состоит из шестидесяти пяти входных факторов (анализов и анамнезов) и четырех выходных значений, характеризующих форму гепатита. Набор входных фак- торов выбран исходя из рекомендаций по клинической диагностике формы гепатита, нозологические формы выбирались в соответствии с требованиями международной системы классификации болезней. Предложенный алгоритм решения задачи основан на применении модифицированного итерационного метода Качмажа для решения систем линейных уравнений нейронной сети, при решении происходит расчет весовых коэффициентов. Выбранный метод позволяет производить расчет, эффективно используя вычислительные возможности. Система реализована в среде разработки Embarcadero Delphi, в качестве сервера БД использован FirebirdSQL. БД содержит 280 эталонных образов, участвующих в обучении системы. Общее количество итераций для формирования базы весовых коэффициентов составляет 260, полученная ошибка обучения равна 0,2–0,3. Применение образов, содержащих наибольшую ошибку, позволяет понизить ошибку и общее количество образов. Система прошла клиническую апробацию на полных данных 100 реальных пациентов, коэффициент корреляции составил 0,7. В ряде случаев применение разработанной системы позволяет повысить эффективность лечения. Применение данного подхода также возможно для оценки эффективности лечения гепатита.
Authors: Dmitriev G.A. (kirsanich@mail.ru) - Tver State Technical University, Tver, Russia, Ph.D, A.N. Astafev (a.n.astafyev@gmail.com) - Lipetsk State Technical University (Assistant), Lipetsk, Russia | |
Keywords: diagnosis of hepatitis, neural network, dss, decision-making support system, information system, medical diagnostics |
|
Page views: 14534 |
Print version Full issue in PDF (29.80Mb) |
Система поддержки принятия решений при определении нозологической формы гепатита
DOI: 10.15827/0236-235X.120.0
Date of submission article: 04.08.2017
UDC: 519.68
The article was published in issue no. № 4, 2017.
The article considers the problem of determining a nosological entity of hepatitis to reduce the number of clinical errors in the assessment of medical history and clinical analysis. This problem might be solved based on iterative learning in reference situations using software that model specialists’ experience.
A decision support system has a task that consists of sixty-five input factors such as tests and anamnesis and four output values that characterize the type of hepatitis. The sample of input factors is based on recommendations for a clinical diagnosis of the type of hepatitis. Nosological entities correspond to the international nosology requirements.
The proposed algorithm is based on a modified iterative Kaczmarz method for solving systems of linear equations in a neural network. Solving includes calculation of weighted coefficients. This method allows performing calculations with efficient using of some computational capabilities. The system powered by Embarcadero Delphi. A database server is FirebirdSQL. The database contains 280 reference images involved in training of the system. The total amount of iterations for forming the basis of weighted coefficients is 260. The training error is 0.2–0.3. Applicability of images with the maximum error allows reducing the error and the total amount of images.
The system has been clinically tested on the data of 100 real patients, the correlation index is 0.7. The developed system allows increasing the treatment efficacy in some cases. The proposed approach might be used to assess efficacy of hepatitis treatment.
Dmitriev G.A. (kirsanich@mail.ru) - Tver State Technical University, Tver, Russia, Ph.D, A.N. Astafev (a.n.astafyev@gmail.com) - Lipetsk State Technical University (Assistant), Lipetsk, Russia
Ссылка скопирована!
Permanent link: http://swsys.ru/index.php?page=article&id=4379&lang=&lang=en&like=1 |
Print version Full issue in PDF (29.80Mb) |
The article was published in issue no. № 4, 2017 |
The article was published in issue no. № 4, 2017.
Perhaps, you might be interested in the following articles of similar topics:Perhaps, you might be interested in the following articles of similar topics:
- Система диагностики и оценки риска остеопоротического перелома на основе интеллектуального анализа данных
- Комплекс программных средств для анализа риска и последствий аварий на химически опасных объектах
- Интеллектуальная информационная система для решения задач прогнозирования неисправностей вагонного оборудования на железнодорожном транспорте
- Информационная система аналитического сценария формирования долга региона
- Инфологические и структурные модели подсистемы управления материально-техническим обеспечением учебного процесса
Back to the list of articles