Авторитетность издания
ВАК - К1
RSCI, ядро РИНЦ
Добавить в закладки
Следующий номер на сайте
№2
Ожидается:
16 Июня 2024
Методы обработки данных магнитно-резонансной томографии для когнитивной визуализации и трекинга областей интереса
Magnetic resonance imaging data processing methods for cognitive visualization and tracking of zones of interest
Дата подачи статьи: 26.06.2019
УДК: 004.932
Статья опубликована в выпуске журнала № 3 за 2019 год. [ на стр. 518-524 ]Аннотация:На настоящее время разработано большое количество алгоритмических и программных средств обработки и визуализации данных магнитно-резонансной томографии (МРТ), решающих различные задачи сегментации, анализа изображений, моделирования и др. Однако до сих пор существует ряд проблем: отсутствие инструментов для автоматизированного высокоточного по-иска в данных МРТ целевых объектов и областей интереса (в интерактивном режиме работы), трудности оперативного анализа большого объема динамически изменяющихся параметров исследуемых объектов, необходимость в улучшении оснащенности исследователей за счет создания новой инструментальной базы и средств обработки данных МРТ. Кроме того, некоторые направления биомедицинских исследований требуют наличия узкоспециализированных инструментов обработки и анализа данных МРТ. Одним из таких направлений является изучение свойств мезенхимальных стволовых клеток, трансплантированных в мозг, пораженный ишемическим инсультом. Основной целью настоящего исследования является создание методов интеллектуального автоматического анализа данных МРТ для поддержки врачей, занимающихся изучением зон ишемического поражения и особенностей движения трансплантированных мезенхимальных стволовых клеток в мозге лабораторных животных. Эти методы позволяют автоматически обнаруживать и визуализировать области интереса в головном мозге. 2D- и 3D-визуализация дают возможность смоделировать во времени процесс за-рождения и развития зон интереса. Методы и алгоритмы опираются на обработку DICOM-файлов, получаемых при сканировании головного мозга реципиентов (лабораторных крыс) в режимах T2 (для обнаружения ишемического поражения) и SWI (для обнаружения скоплений мезенхимальных стволовых клеток). Для изучения процессов миграции и хоуминга стволовых клеток был применен метод Coherent Point Drift. Разработанные алгоритмы положены в основу программного комплекса, предназначенного для экспертной поддержки принятия решений исследователей. Функционал комплекса позволяет автоматически выделять области интереса на снимках МРТ и вычислять их информативные параметры.
Abstract:The main goal of this research is the development of methods for intelligent automatic analysis of mag-netic resonance imaging (MRI) data to support physicians engaged into the study of areas of ischemic lesion and the movement characteristics of mesenchymal stem cells transplanted in the brain of labora-tory animals. The relevance of this research is determined by existence of a number of unsolved prob-lems in the field of study of MRI data automatic analysis. They are: a lack of tools for automated high-precision search of target objects and areas of interests in MRI data (in the interactive mode); problems of fast analysis of a large amount of dynamically changing parameters of the objects under study; a lack of significant improvement of researchers’ equipment through creating a new instrumental base and methods of processing MRI data. The paper presents methods and algorithms to solve the problem of automating the processes of MRI data intellectual processing. The developed methods allow automatic detection and visualization of areas of interest in the brain: ischemic lesions and transplanted stem cells. 2D and 3D visualizations make it possible to model the process of the genesis and changing of zones of interest in time. The methods and algorithms are based on processing DICOM files obtained by scanning a recipient's brain (laboratory rats) in T2 mode (to detect ischemic lesion zone) and SWI mode (to detect mesenchymal stem cells clusters). The developed algorithms form the basis of a software package for processing and analyzing bio-medical data for expert decision-making support for researchers. This software package allows auto-matic detecting of areas of interest in MRI data. The introduction of tracking functions into the devel-oped software package allowed in-depth study of the migration and homing processes of stem cells during a transplantation into a brain affected by various diseases.
Авторы: Фраленко В.П. (alarmod@pereslavl.ru) - Институт программных систем им. А.К. Айламазяна РАН (ведущий научный сотрудник), Переславль-Залесский, Россия, кандидат технических наук, Шустова М.В. (m.v.shustova@gmail.com) - Институт программных систем им. А.К. Айламазяна РАН (аспирант), Переславль-Залесский, Россия, Хачумов М.В. (khmike@inbox.ru) - Федеральный исследовательский центр «Информатика и управление» РАН (старший научный сотрудник), Москва, Россия, кандидат физико-математических наук | |
Ключевые слова: обработка изображений, графический интерфейс, магнитно-резонансная томография, стволовые клетки, ишемический инсульт, пути миграции, информативные параметры |
|
Keywords: image processing, graphical interface, magnetic resonance imaging, stem cells, ischemic stroke, migration paths, informative parameters |
|
Количество просмотров: 10540 |
Статья в формате PDF |
Методы обработки данных магнитно-резонансной томографии для когнитивной визуализации и трекинга областей интереса
DOI: 10.15827/0236-235X.127.518-524
Дата подачи статьи: 26.06.2019
УДК: 004.932
Статья опубликована в выпуске журнала № 3 за 2019 год. [ на стр. 518-524 ]
На настоящее время разработано большое количество алгоритмических и программных средств обработки и визуализации данных магнитно-резонансной томографии (МРТ), решающих различные задачи сегментации, анализа изображений, моделирования и др. Однако до сих пор существует ряд проблем: отсутствие инструментов для автоматизированного высокоточного по-иска в данных МРТ целевых объектов и областей интереса (в интерактивном режиме работы), трудности оперативного анализа большого объема динамически изменяющихся параметров исследуемых объектов, необходимость в улучшении оснащенности исследователей за счет создания новой инструментальной базы и средств обработки данных МРТ. Кроме того, некоторые направления биомедицинских исследований требуют наличия узкоспециализированных инструментов обработки и анализа данных МРТ. Одним из таких направлений является изучение свойств мезенхимальных стволовых клеток, трансплантированных в мозг, пораженный ишемическим инсультом.
Основной целью настоящего исследования является создание методов интеллектуального автоматического анализа данных МРТ для поддержки врачей, занимающихся изучением зон ишемического поражения и особенностей движения трансплантированных мезенхимальных стволовых клеток в мозге лабораторных животных.
Эти методы позволяют автоматически обнаруживать и визуализировать области интереса в головном мозге. 2D- и 3D-визуализация дают возможность смоделировать во времени процесс за-рождения и развития зон интереса. Методы и алгоритмы опираются на обработку DICOM-файлов, получаемых при сканировании головного мозга реципиентов (лабораторных крыс) в режимах T2 (для обнаружения ишемического поражения) и SWI (для обнаружения скоплений мезенхимальных стволовых клеток). Для изучения процессов миграции и хоуминга стволовых клеток был применен метод Coherent Point Drift.
Разработанные алгоритмы положены в основу программного комплекса, предназначенного для экспертной поддержки принятия решений исследователей. Функционал комплекса позволяет автоматически выделять области интереса на снимках МРТ и вычислять их информативные параметры.
Фраленко В.П. (alarmod@pereslavl.ru) - Институт программных систем им. А.К. Айламазяна РАН (ведущий научный сотрудник), Переславль-Залесский, Россия, кандидат технических наук, Шустова М.В. (m.v.shustova@gmail.com) - Институт программных систем им. А.К. Айламазяна РАН (аспирант), Переславль-Залесский, Россия, Хачумов М.В. (khmike@inbox.ru) - Федеральный исследовательский центр «Информатика и управление» РАН (старший научный сотрудник), Москва, Россия, кандидат физико-математических наук
Ссылка скопирована!
Постоянный адрес статьи: http://swsys.ru/index.php?page=article&id=4630 |
Версия для печати |
Статья опубликована в выпуске журнала № 3 за 2019 год. [ на стр. 518-524 ] |
Статья опубликована в выпуске журнала № 3 за 2019 год. [ на стр. 518-524 ]
Возможно, Вас заинтересуют следующие статьи схожих тематик:Возможно, Вас заинтересуют следующие статьи схожих тематик:
- Метод автоматического трекинга стволовых клеток по данным магнитно-резонансной томографии
- Об одном подходе к оценке качества обработки видеографической информации
- Программный комплекс для обнаружения и классификации природных объектов на основе топологического анализа
- Исследование методов сегментации изображений
- Прогнозирование времени обработки изображений детерминированными методами
Назад, к списку статей