Авторитетность издания
ВАК - К1
RSCI, ядро РИНЦ
Добавить в закладки
Следующий номер на сайте
№3
Ожидается:
16 Сентября 2025
Исследование оптимального количества процессорных ядер для алгоритма многократной маркировки перколяционных кластеров на суперкомпьютерных вычислительных системах
Investigation of the optimal number of processor cores for parallel cluster multiple labeling on supercomputers
Дата подачи статьи: 21.08.2019
УДК: 519.673
Статья опубликована в выпуске журнала № 4 за 2019 год. [ на стр. 573-580 ]Аннотация:Статья посвящена выбору оптимального количества запрашиваемых процессорных ядер для запуска алгоритма многократной маркировки перколяционных кластеров. Работа выполнена в ходе проведения имитационных экспериментов задачи мультиагентного моделирования процессов распространения массовых эпидемий на современных суперкомпьютерных системах, установ-ленных в Межведомственном суперкомпьютерном центре РАН. Алгоритм может быть использован в любой области в качестве инструмента дифференцирования кластеров решетки большого размера, так как ему на вход подаются данные в формате, не за-висящем от приложения. В МСЦ РАН этот инструмент использовался для изучения задачи распространения эпидемий, для чего была разработана соответствующая мультиагентная модель. В модели рассматривается абстрактное заболевание, передаваемое контактным путем. В ходе моделирования определяется пороговое значение вероятности инфицирования (то есть сама вероятность инфицирования является изменяемым параметром), при котором возникает эффект перко-ляции на решетке распространения заболевания. Если это значение близко к индексу контагиозности конкретного заболевания, то следует ожидать распространения эпидемии в планетарном масштабе. В процессе имитационных экспериментов применялся усовершенствованный для многопроцессорной системы вариант алгоритма многократной маркировки перколяционных кластеров Хошена–Копельмана, связанный с механизмом линковки меток, который также может быть использован в любой области в качестве инструмента дифференцирования кластеров решетки большого размера. В статье дана оценка времени выполнения алгоритма многократной маркировки перколяционных кластеров Хошена–Копельмана при различных значениях входных параметров на четырех основных высокопроизводительных вычислительных системах, установленных в Межведомственном суперкомпьютерном центре РАН: суперкомпьютерах МВС-10П МП2 KNL, МВС-10П ОП, МВС 10П Торнадо, МВС-100К.
Abstract:The article considers the optimum number of processor cores for launching the Parallel Cluster Multi-ple Labeling Technique in the course of conducting simulation experiments on the problem of multi-agent modeling of the spread of mass epidemics on modern supercomputer systems installed in the JSCC RAS. This algorithm can be used in any field as a tool for differentiating large lattice clusters, because he is given input in a format independent of the application. At the JSCC RAS, this tool was used to study the problem of the spread of epidemics, for which an appropriate multiagent model was developed. The model considers an abstract disease transmitted by contact. During the simulation, the thresh-old value of the probability of infection is determined (i.e., the probability of infection itself is a varia-ble parameter), at which the percolation effect appears on the distribution grid of the disease. If this value is close to the contagiousness index of a particular disease, then there is every chance of expect-ing an epidemic to spread on a planetary scale. In the course of imitation experiments, a variant of the Parallel Cluster Multiple Labeling Technique for percolation Hoshen-Kopelman clusters related to the tag linking mechanism, which can also be used in any area as a tool for differentiating large-size lattice clusters, was used to be improved on a multiprocessor system. The article provides an estimate of the execution time of the Parallel Cluster Multiple Labeling Technique for Hoshen-Kopelman percolation clusters for various values of input parameters on high-performance computing systems installed in the JSCC RAS: MVS-10P MP2 KNL, MVS-10P OP, MVS 10P Tornado, MVS-100K.
Авторы: Лапшина С.Ю. (lapshina@jscc.ru) - Межведомственный суперкомпьютерный центр РАН – филиал ФНЦ НИИСИ РАН (начальник научно-организационного отдела), Москва, Россия, Сотников А.Н. (asotnikov@iscc.ru) - Федеральный исследовательский центр «Информатика и управление» РАН, ул. Вавилова, 44-2, г. Москва, 119333, Россия (главный научный сотрудник), г. Москва, Россия, доктор физико-математических наук, Логинова В.Е. (vl@jscc.ru) - Межведомственный суперкомпьютерный центр РАН – филиал ФНЦ НИИСИ РАН (ведущий инженер-программист), Москва, Россия, Юдинцев К.Ю. (climenty@jscc.ru ) - Межведомственный суперкомпьютерный центр РАН – филиал ФНЦ НИИСИ РАН (научный сотрудник), Москва, Россия | |
Ключевые слова: мультиагентное моделирование, перколяционный кластер, механизм линковки меток, высокопроизводительные вычислительные системы, процессорные ядра |
|
Keywords: multi-agent simulation, percolation’s cluster, parallel cluster multiple labeling technique, high-performance computing systems, processor cores |
|
Количество просмотров: 11048 |
Статья в формате PDF Выпуск в формате PDF (4.91Мб) |
Исследование оптимального количества процессорных ядер для алгоритма многократной маркировки перколяционных кластеров на суперкомпьютерных вычислительных системах
DOI: 10.15827/0236-235X.128.573-580
Дата подачи статьи: 21.08.2019
УДК: 519.673
Статья опубликована в выпуске журнала № 4 за 2019 год. [ на стр. 573-580 ]
Статья посвящена выбору оптимального количества запрашиваемых процессорных ядер для запуска алгоритма многократной маркировки перколяционных кластеров. Работа выполнена в ходе проведения имитационных экспериментов задачи мультиагентного моделирования процессов распространения массовых эпидемий на современных суперкомпьютерных системах, установ-ленных в Межведомственном суперкомпьютерном центре РАН.
Алгоритм может быть использован в любой области в качестве инструмента дифференцирования кластеров решетки большого размера, так как ему на вход подаются данные в формате, не за-висящем от приложения. В МСЦ РАН этот инструмент использовался для изучения задачи распространения эпидемий, для чего была разработана соответствующая мультиагентная модель.
В модели рассматривается абстрактное заболевание, передаваемое контактным путем. В ходе моделирования определяется пороговое значение вероятности инфицирования (то есть сама вероятность инфицирования является изменяемым параметром), при котором возникает эффект перко-ляции на решетке распространения заболевания. Если это значение близко к индексу контагиозности конкретного заболевания, то следует ожидать распространения эпидемии в планетарном масштабе.
В процессе имитационных экспериментов применялся усовершенствованный для многопроцессорной системы вариант алгоритма многократной маркировки перколяционных кластеров Хошена–Копельмана, связанный с механизмом линковки меток, который также может быть использован в любой области в качестве инструмента дифференцирования кластеров решетки большого размера.
В статье дана оценка времени выполнения алгоритма многократной маркировки перколяционных кластеров Хошена–Копельмана при различных значениях входных параметров на четырех основных высокопроизводительных вычислительных системах, установленных в Межведомственном суперкомпьютерном центре РАН: суперкомпьютерах МВС-10П МП2 KNL, МВС-10П ОП, МВС 10П Торнадо, МВС-100К.
Лапшина С.Ю. (lapshina@jscc.ru) - Межведомственный суперкомпьютерный центр РАН – филиал ФНЦ НИИСИ РАН (начальник научно-организационного отдела), Москва, Россия, Сотников А.Н. (asotnikov@iscc.ru) - Федеральный исследовательский центр «Информатика и управление» РАН, ул. Вавилова, 44-2, г. Москва, 119333, Россия (главный научный сотрудник), г. Москва, Россия, доктор физико-математических наук, Логинова В.Е. (vl@jscc.ru) - Межведомственный суперкомпьютерный центр РАН – филиал ФНЦ НИИСИ РАН (ведущий инженер-программист), Москва, Россия, Юдинцев К.Ю. (climenty@jscc.ru ) - Межведомственный суперкомпьютерный центр РАН – филиал ФНЦ НИИСИ РАН (научный сотрудник), Москва, Россия
Ссылка скопирована!
Постоянный адрес статьи: http://swsys.ru/index.php?page=article&id=4644 |
Версия для печати Выпуск в формате PDF (4.91Мб) |
Статья опубликована в выпуске журнала № 4 за 2019 год. [ на стр. 573-580 ] |
Статья опубликована в выпуске журнала № 4 за 2019 год. [ на стр. 573-580 ]
Возможно, Вас заинтересуют следующие статьи схожих тематик:Возможно, Вас заинтересуют следующие статьи схожих тематик:
- Сравнительный анализ работы алгоритма многократной маркировки перколяционных кластеров на различных разделах суперкомпьютера МВС-10П ОП
- Исследование алгоритма многократной маркировки перколяционных кластеров при частичной загрузке вычислительных узлов на суперкомпьютерных системах
- Высокопроизводительные вычисления в практике моделирования роста перколяционных кластеров
- Мультиагентное моделирование процессов распространения массовых эпидемий с использованием суперкомпьютеров
- Мультиагентное моделирование процессов распространения и взаимодействия инфицирующих сущностей
Назад, к списку статей