Татарникова Т.М. (tm-tatarn@yandex.ru) - Санкт-Петербургский государственный университет аэрокосмического приборостроения (доцент, профессор), Санкт-Петербург, Россия, доктор технических наук, Богданов П.Ю. (45bogdanov@gmail.ru) - Российский государственный гидрометеорологический университет (ст. преподаватель), Санкт-Петербург, Россия | |
Ключевые слова: эксперимент на модели, имитационная модель, энергопотребление, срок службы интернета вещей, сеть интернета вещей |
|
Keywords: model experiment, simulation model, energy costs, lifespan of internet of things, internet of things network |
|
|
Основными показателями качества беспроводной сенсорной сети (БСС), образующей физический уровень интернета вещей (Internet of Things, IoT), являются безопасность и срок службы сенсорных узлов (датчиков). В качестве источника питания сенсорные узлы используют батареи, ресурсы которых ограничены [1]. Энергопотребление – количество энергии, используемой и потраченной узлами БСС. Единица измерения – джоуль. От энергопотребления зависит срок службы БСС [2]. Срок службы сети – время, в течение которого БСС будет полностью функционировать. Единица измерения – секунды. Срок службы БСС может быть измерен с помощью следующих параметров: - число активных узлов – количество узлов, которые еще функционируют и имеют энергию для работы; - время «смерти» первого узла – время до тех пор, пока уровень остаточной энергии первого сенсорного узла не упадет до критического состояния; - коэффициент доставки пакетов – отношение числа доставленных адресату пакетов к числу отправленных. Беспроводные сети обычно развертываются в удаленных и враждебных средах и, как правило, остаются без присмотра. В силу этого они не имеют физической защиты (например, отсутствуют коммутаторы или шлюзы для отслеживания потока информации), что может привести к компрометации узла. Поэтому требуются эффективные механизмы защиты от атак в БСС с учетом огра- ничений по электропитанию сенсорных устройств (СУ) [3, 4]. Внедрение механизмов защиты данных требует дополнительных затрат энергии, свя- занных с их реализацией, однако отсутствие этих механизмов чревато распространением атак, истощающих энергию узлов, и сокращением срока службы IoT. Очевидно, что своевременное обнаружение подобных атак способствует увеличению срока службы сети по сравнению с той, в которой механизмы безопасности отсутствуют [5]. В статье приведены результаты имитационного эксперимента, доказывающие данное утверждение. Описание объектов имитационной модели Имитационная модель IoT, как и реальная сеть, состоит из модулей, только програм- мных, и создана на программной платформе С++. В процессе разработки использованы принципы объектно-ориентированного программирования, что позволило выделить отдельные сущности, описывающие состояние и поведение узлов IoT-сети. Далее перечислены основные программные интерфейсы, описывающие компоненты модели IoT-сети. 1. Packet – программный агент, представленный в виде записи следующих значений: - момент генерации пакета; - время, зафиксированное после свершения очередного события относительно момента генерации; - адрес назначения пакета; - статус пакета: активный (true) – пакет может обрабатываться или передаваться, пассивный (false) – в противном случае. 2. Node – СУ (узел) БСС, которое характеризуется идентификатором (номером), местоположением (координатами), запасом энергии, законом генерации следующих данных: - сообщение-маяк, оповещающее о присутствии сенсора в данном кластере; - пакет с данными, содержащий заре- гистрированные данные об окружающей среде – измерения; - сообщение о местоположении узла (может не использоваться). В свою очередь, СУ принимает управляющие сообщения от головного узла кластера (главы кластера – ГК), обнаруживает его аномальное поведение и участвует в выборе головного узла кластера путем расчета уровня остаточной энергии. 3. HeadNode – головной узел кластера, характеризующийся идентификатором, местоположением (координатами), запасом энер- гии, законом генерации следующих данных: - сообщений о синхронизации по времени; - управляющих пакетов данных – команд; - данных от СУ главе кластера; - агрегированных данных маршрутизатору. В свою очередь, головной узел кластера получает сообщения-маяки от узлов при их выходе из кластера и входе в него, анализирует статистические характеристики получаемых пакетов данных. Назначение ГК выполняется по протоколу LEACH (Low-Energy Adaptive Clustering Hierarchy). Это самоорганизующийся адаптивный протокол кластеризации, который использует рандомизацию для равномерного распределения энергетической нагрузки между датчиками в сети. Функции аутентификации СУ и головного узла в имитационной модели не рассматриваются. 4. Protocol – программный интерфейс, используемый для описания процесса доступа СУ к головному узлу кластера. Сеть состоит из набора кластеров. Каждый кластер управляется ГК. Все кластеры имеют свои собственные узлы, называемые узлами кластера. Головной узел устанавливает расписание множественного доступа с временным разделением (Time-division multiple access, TDMA) и передает это расписание всем узлам своего кластера. Затем узлы i-го кластера передают свои измерения соответствующему головному узлу. После этого головные узлы кластеров объединяют данные и пересылают их на ближайший маршрутизатор. 5. BaseStation – маршрутизатор БСС, агрегирующий данные со всех узлов БСС. Маршрутизатор находится в центре сенсорного поля и в отличие от других узлов БСС в имитационной модели имеет неограниченный запас энергии и не может быть подвергнут атакующему воздействию. Маршрутизатор имеет полную информацию о каждом ГК (номер и МАС-адрес). Также в процессе моделирования маршрутизатор используется для подсчета правильно доставленных пакетов и обменивается данными с внешней сетью. 6. Network – вся IoT-сеть, совокупность всех узлов и маршрутизатора. Используется для создания компонентов сети, первоначального размещения узлов, моделирования появления данных на узлах, инициализации атакующих узлов, а также для сбора данных о состоянии узлов сети. 7. Attack – программный интерфейс, описывающий поведение узлов, моделирующих атакующее воздействие.
В результате работы программы генерируются текстовые лог-файлы, содержащие список событий, произошедших в БСС, например, появление, передачу или прием данных. Помимо этого, имеется возможность добавления инструкций, вычисляющих другую информацию о сети в зависимости от задачи, в частности, долю потерянных пакетов.
В таблице приведены основные модули модели, имитирующие реальные объекты сети IoT. Алгоритм выбора ГК приведен на рисунке 1. Выбор ГК выполняется в каждом новом раунде работы БСС. Происходит это следующим образом [8]: в начале раунда независимо друг от друга на каждом СУ (пусть их количество равно N) генерируется случайное число zi Î [0, 1],
где Р - априорная вероятность, задающая допустимое число ГК (кластеров) в сенсорном поле, как правило, P £ 0.25; i – порядковый номер СУ; r – номер текущего раунда. СУ назначается ГК, если zi < Thi, иначе назначается простым узлом кластера. Алгоритм работы объекта Protocol заключается в следующем. СУ начинают передачу данных только по запросу головного узла. Время отдельного опроса – временной интервал, разделенный на блоки – окна. Размер окон определяется количеством слотов, на которые они делятся. Размер слота – фиксированная величина для каждого СУ. Так как слот – это тоже временной интервал, его размер определяется скоростью передачи данных от СУ до узла, то есть его определяет оборудование, используемое в системе [9].
В процессе доступа в слоте возможно возникновение трех состояний: - пусто (ни одно из СУ не выбрало текущий слот для передачи данных); - успех (только одно СУ передает данные в текущем слоте); - конфликт (коллизия) (более одного СУ начинают передавать данные в текущем слоте). Опрос СУ, находящихся в зоне покрытия головного узла, заканчивается, когда в окне появляются только слоты с успешной переда Головной узел анализирует каждый слот и снимает информацию, переданную в них. Продолжительность обслуживания СУ tserv при опросе формируется следующим образом: tserv= tsur + tsend. (2) Полный цикл взаимодействия головного узла с N СУ составляет случайное суммарное время T = Nts. Связь этих переменных показана на рисунке 2. На рисунке 3 приведен алгоритм моделирования случайного события – генерации атаки.
Одна и та же модель ВК для представления разных маршрутов будет отличаться только параметрами, а генераторы фоновых потоков компенсируют нерассматриваемую часть IoT-сети. Результаты имитационного эксперимента на модели БСС Моделируемая БСС представляет собой совокупность из 100 одинаковых по характеристикам сенсорных узлов, расположенных на территории размером 200 на 200 метров. СУ задается местоположением – координатами X, Y в сенсорном поле. Узлы распределены случайно согласно равномерному закону, задающему плотность распределения СУ. Внутри сенсорного поля узлы могут перемещаться случайным образом в радиусе 2 метров за одну итерацию. Радиус действия узлов – 25 метров. E¢ = 50 нДж/бит, E² = 100 пДж/бит/м2.
Заключение Для демонстрации необходимости внедрения механизмов защиты БСС от атак, истощающих энергию узлов, разработана имитационная модель IoT-сети. Приведены некоторые особенности программной реализации основных модулей имитационной модели. Результаты имитационного эксперимента показывают, что своевременное обнаружение атак, направленных на истощение энергии сенсорных узлов, способствует увеличению срока службы сети и коэффициента доставки пакетов адресату по сравнению с сетью, в ко- торой механизмы противодействия атакам отсутствуют. Литература 1. Варгаузин В.А. Радиосети для сбора данных от сенсоров, мониторинга и управления на основе стандарта IEEE 802.15.4 // ТелеМультиМедиа. 2005. № 6. C. 23–27. 2. Татарникова Т.М., Богданов П.Ю., Краева Е.В. Предложения по обеспечению безопасности системы умного дома, основанные на оценке потребляемых ресурсов // Проблемы информационной безопасности. Компьютерные системы. 2020. № 4. С. 88–94. 3. Kind А., Stoecklin М.Р., Dimitripoulos Х. Histogram-basedtraffic anomaly detection. IEEE Transactions on Network and Service Management, 2009, vоl. 6, no. 2, pp. 110–121. DOI: 10.1109/TNSM.2009. 090604. 4. Татарникова Т.М., Журавлев А.М. Нейросетевой метод обнаружения вредоносных программ на платформе Android // Программные продукты и системы. 2018. Т. 33. № 3. С. 543–547. DOI: 10.15827/0236-235X.123.543-547. 5. Киричек Р.В., Парамонов А.И., Прокопьев А.В., Кучерявый А.Е. Эволюция исследований в области беспроводных сенсорных сетей // ИТТ. 2014. Т. 2. № 4. С. 29–41. URL: http://www.sut.ru/ doci/nauka/review/4-14.pdf (дата обращения: 15.08.2021). 6. Baddar S.А.-Н., Merlo А., Migliardi М. Аnоmаlу detection in computer networks: A state-of-the-art review. JoWUA, 2014, vol. 5, nо. 4, pp. 29–64. DOI: 10.22667/JOWUA.2014.12.31.029. 7. Simmross-Wattenberg F., Asensio-Perez J.I., Casaseca-de-la-Higuera P., Martin-Fernandez М. et al. Anomaly detection of network traffic based on statistical inference and a-stable mоdеling. IEEE Transactions on Dependable and Secure Computing, 2011, vol. 8, no. 4, pp. 494–509. DOI: 10.1109/TDSC. 2011.14. 8. Жарков С.Н. Стохастическое формирование проактивного множества при кластеризации в мобильных беспроводных сенсорных сетях // T-Comm – телекоммуникации и транспорт. 2013. Т. 7. № 5. С. 29–34. 9. Переспелов А.В., Богданов П.Ю., Краева Е.В. Применение технологии виртуализации для организации разграничения доступа // Изв. вузов. Приборостроение. 2021. Т. 64. № 5. С. 364–369. DOI: 10.17586/0021-3454-2021-64-5-364-369. 10. Гольдштейн Б.С., Кучерявый А.Е. Сети связи пост-NGN. СПб: БХВ-Петербург, 2014. 160 c. 11. Викулов А.С., Парамонов А.И. Анализ трафика в сети беспроводного доступа стандарта IEEE 802.11 // Тр. учебных заведений связи. 2017. Т. 3. № 3. С. 21–27. References
|
http://swsys.ru/index.php?id=4850&lang=.docs&page=article |
|