ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2015 г.)
2-летний импакт-фактор РИНЦ: 0,339
2-летний импакт-фактор РИНЦ без самоцитирования: 0,227
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,454
5-летний импакт-фактор РИНЦ: 0,324
5-летний импакт-фактор РИНЦ без самоцитирования: 0,251
Суммарное число цитирований журнала в РИНЦ: 3278
Пятилетний индекс Херфиндаля по цитирующим журналам: 571
Индекс Херфиндаля по организациям авторов: 420
Десятилетний индекс Хирша: 10
Место в общем рейтинге SCIENCE INDEX за 2014 год: 267
Место в рейтинге SCIENCE INDEX за 2014 год по тематике "Автоматика. Вычислительная техника": 11

Больше данных по публикационной активности нашего журнале за 2008-2015 гг. на сайте РИНЦ

Вход


Забыли пароль? / Регистрация

Добавить в закладки

Следующий номер на сайте

2
Ожидается:
16 Июня 2017

Статьи из выпуска № 2 за 2016 год.

Упорядочить результаты по:
Дате публикации | Заголовку статьи | Авторам

1. Возможности параллельного программирования в математических пакетах [2016-06-01]
Автор: Чернецов А.М.
Просмотров: 1624
За последние годы при решении множества трудновычислимых задач стали применяться средства и возможности параллельного программирования. Широко известны модели программирования в общей и распределенной памяти, позднее к ним прибавились гибридные модели. Однако все упомянутые средства относятся к достаточно низкоуровневому программированию, когда производится значительная переделка исходного кода. Немалое число математических расчетов выполняется не на алгоритмических языках (C/C++, Fortran), а в специализированных математических пакетах MATLAB, Maple, Mathematica, MathCad. В работе рассмотрены средства параллельного программирования в современных математических пакетах. Приведен краткий обзор развития средств параллельного программирования в широко распространенных пакетах MATLAB, Maple, Mathematica и MathCad. Для MATLAB кратко описываются основные примитивы параллельного программирования и их соответствия в среде MPI, а также приводятся другие операторы параллельного программирования. Рассматриваются различные средства обеспечения параллелизма в пакете Maple (работа с нитями, высокоуровневыми абстракциями Task Programming Model, параллельное программирование). Для Mathematica приводятся некоторые базовые конструкции параллельного программирования, имеющиеся в языке Mathematica Wolfram Language. Рассматриваются различные примеры. В зависимости от того, в каком пакете происходит работа, доступны несколько отличающиеся возможности, однако любая задача может быть решена в каждом из рассматриваемых пакетов (за исключением MathCad).

2. Алгоритм классификации, основанный на принципах случайного леса, для решения задачи прогнозирования [2016-06-01]
Авторы: Курейчик В.М., Картиев С.Б.
Просмотров: 1331
Работа посвящена методам построения ансамблей моделей для решения задачи прогнозирования. Одним из основных этапов прогнозирования является классификация. На данном этапе производится основная логика прогностических моделей. Описывается метод классификации с использованием методов случайного леса. Отмечены плюсы и минусы использованных методов. В ходе работы обосновывается выбор данного метода для применения в разработанной системе прогнозирования. Разработан алгоритм построения случайного леса на основе методов комбинирования элементов принятия решений и обучения сформированной структуры данных с использованием модифицированного алгоритма обучения случайного леса (MRF). Принципиальным отличием данного метода является нахождение оптимального класса, к которому относится объект, рассматриваемый для задачи прогнозирования. Описывается программная реализация на языке Java с использованием принципов обобщенного программирования и приводится описание основной структуры данных в виде UML-диаграммы. Также определено место разработанного модуля в системе диагностирования сложных технических систем по поддержанию работоспособности программной системы с использованием принципов моделирования, основанных на темпоральной логике. Проведены экспериментальные исследования, показавшие эффективность описываемого метода по сравнению с существующими. Качество классификации улучшилось примерно на 5 % по сравнению с предыдущими опытами.

3. Модель и алгоритмизация оптимизационной задачи о назначениях в условиях дополнительных ограничений [2016-06-01]
Авторы: Мартынов Д.В., Допира Р.В., Абу-Абед Ф.Н., Кордюков Р.Ю., Иванова А.В.
Просмотров: 1302
В статье рассматривается задача оптимального выбора кандидатов на выполнение работ в тендерных проектах исходя из финансовых условий, выдвигаемых соискателями. Представлены критерии, являющиеся ключевыми при отборе подходящих заявок претендентов с учетом заранее объявленных нормативов. Задача приводится в формализованном виде, при этом целевой функцией является минимизация затрат на реализацию проектов. Построена модель, агрегирующая исходные данные и ограничения в единую систему и позволяющая оперировать начальными условиями для их анализа. Предлагается специальный алгоритм поиска оптимальных вариантов назначений, базирующийся на теории графов, методике последовательного анализа и отсева вариантов и неявном переборе. Данный алгоритм учитывает требования, предъявляемые к заявкам соискателей, и работает как при наличии финансовых ограничений предприятий по максимуму и минимуму, так и при их отсутствии, а также предоставляет возможность подбора исполнителей на комплексный проект, реализация которого подразумевает успешное совместное завершение множества отдельных проектов, входящих в его состав. Предлагаемое ПО, разработанное для решения данной задачи, предоставляет возможности по формированию списков конкурсных проектов, кандидатов на их выполнение и их заявок на определенные виды работ с учетом существующих стоимостных, временных и вероятностных ограничений. По представленному алгоритму осуществляется поиск всех заявок, удовлетворяющих требованиям нормативов, и среди них определяется оптимальная выборка, учитывающая возможности исполнителей по освоению выделяемых ресурсов.

4. Алгоритмы автоматизированной системы управления испытанием оборудования на надежность [2016-06-01]
Авторы: Русин А.Ю., Абдулхамед М., Барышев Я.В.
Просмотров: 1215
Повышения экономической эффективности системы испытания оборудования на надежность можно добиться, сократив время испытаний или уменьшив количество испытуемых образцов. При сокращении времени испытаний возрастает степень цензурирования выборки, а при уменьшении количества образцов уменьшается объем выборки наработок оборудования. Сокращать параметры испытаний можно только в случае, если методы обработки информации обеспечивают достоверность рассчитанных показателей надежности. В результате испытаний формируются малые цензурированные выборки наработок оборудования на отказ. Расчет показателей надежности по таким выборкам выполняется методом максимального правдоподобия. В статье представлены экспериментальные исследования точности оценки максимального правдоподобия параметра экспоненциального закона распределения по малым, однократно цензурированным справа выборкам. Исследования выполнялись моделированием на компьютере цензурированных выборок, подобных выборкам, формирующимся при испытаниях оборудования на надежность. Эти экспериментальные данные показывают, что большинство оценок максимального правдоподобия, полученных по малым, однократно цензурированным справа выборкам, имеют значительные отклонения от истинных значений. В работе построены регрессионные модели, устанавливающие зависимость между отклонением оценки максимального правдоподобия от истинного значения и параметрами, характеризующими структуру выборки. Они позволяют рассчитать и ввести поправки к оценкам максимального правдоподобия. Были проведены экспериментальные исследования результатов их использования. Точность оценок максимального правдоподобия после применения разработанных моделей и введения поправки к оценкам максимального правдоподобия значительно возрастает. Разработано ПО для применения регрессионных моделей на практике.

5. Приближенные рассуждения на основе темпоральных нечетких байесовских сетей [2016-06-01]
Авторы: Борисов В.В., Захаров А.С.
Просмотров: 1166
Статья посвящена решению актуальной задачи моделирования приближенных рассуждений в условиях неопределенности. Описана темпоральная нечеткая байесовская сеть, представляющая собой байесовскую сеть доверия, в которой предпосылками причинно-следственных связей являются сложные темпоральные высказывания, а в качестве меры истинности высказываний используется нечеткая вероятностная мера. Темпоральная нечеткая байесовская сеть позволяет как качественно, так и количественно задавать причинно-следственные отношения с учетом темпоральных зависимостей в условиях стохастической и нестохастической неопределенности. Результатом приближенных рассуждений является значение нечеткой вероятностной меры истинности утверждения о нахождении узла сети в одном из его состояний. При этом сам процесс рассуждений реализуется в виде последовательного перехода между моментами времени и осуществления для каждого момента времени вероятностного вывода в темпоральной нечеткой байесовской сети. В ходе вывода для каждого момента времени в случае наличия темпоральных зависимостей используются результаты вывода, полученные на предыдущих шагах. Для моделирования приближенных рассуждений на основе темпоральной нечеткой байесовской сети предложен метод, позволяющий в процессе прямого и обратного вывода определять значения нечеткой вероятностной меры истинности высказываний с учетом сложных темпоральных зависимостей. Предлагаемый метод основан, во-первых, на преобразовании нечеткой байесовской сети со сложными темпоральными высказываниями к виду, содержащему лишь простые темпоральные высказывания; во-вторых, на построении дерева сочленений на основе исходной нечеткой байесовской сети; в-третьих, на вычислении искомого распределения нечетких вероятностей посредством передачи сообщений между узлами дерева сочленений, а также на формировании сети временных ограничений для обеспечения возможности передачи сообщений через неоднородные сепараторы дерева сочленений. Разработаны программные средства, реализующие предложенные модель и метод приближенных рассуждений. Приведены примеры использования разработанных модели и метода для анализа динамики психоэмоционального состояния пациентов.

6. Гибридная настольно-облачная платформа для исследования пространства параметров [2016-06-01]
Авторы: Прохоров А.А., Давыдов А.В., Назаренко А.М., Пересторонин Н.О.
Просмотров: 1137
В современной инженерной практике подход к выработке решений с использованием расчетных моделей и метамоделей считается наиболее перспективным и выгодным с точки зрения сокращения сроков и стоимости разработки. Однако его применение сопряжено с рядом методологических и эксплуатационных проблем, вследствие чего данная практика не получает широкого распространения, оставаясь недоступной для небольших коллективов, которые часто не располагают необходимыми ресурсами. Для данного метода характерен высокий порог вхождения, обусловленный высокой сложностью и стоимостью реализации расчетных моделей, которая связана с многодисциплинарным характером современных инженерных задач. Разработка таких моделей требует как широкого спектра знаний в различных областях, так и использования различного специализированного ПО, как правило, доступного только на коммерческой основе. Помимо этого, для проведения крупномасштабных автоматизированных вычислений необходимо наличие специального высокопроизводительного программно-аппаратного комплекса, что влечет дополнительные издержки на его создание и обслуживание. В статье рассматриваются основные вопросы применения крупномасштабных автоматизированных вычислений, необходимость в которых возникает при использовании вычислительных методов на этапе выработки инженерных решений в отличие от распространенной в настоящее время практики, когда вычислительное моделирование проводится уже на этапе валидации предполагаемых решений и не требует многократных вычислительных экспериментов. В качестве способов снижения порога вхождения обсуждаемого метода рассматриваются существующая практика создания интегрированных приложений, доступных широкому кругу пользователей, и применение облачных вычислений, что позволяет сократить накладные расходы на моделирование. Отдельное внимание уделено использованию программных средств с поддержкой облачных вычислений совместно с традиционными настольными приложениями. Сформулированы соответствующие требования к системе управления автоматизированными расчетами, поддерживающей интеграцию как с облачным, так и с настольным ПО, что делает возможным создание гибридных интегрированных приложений для решения классов сходных задач. Предложена архитектура такой системы, разработанная с учетом приведенных требований и позволяющая использовать основные компоненты системы как в облачной, так и в настольной версии с целью минимизации усилий по ее разработке.

7. Препроцессорная обработка множеств прецедентов для построения решающих функций в задачах классификации [2016-06-01]
Авторы: Гданский Н.И., Куликова Н.Л., Крашенинников А.М.
Просмотров: 1276
Рассмотрена актуальная проблема наличия ошибок в обучающих выборках, предназначенных для последующего построения по методу прецедентов решающих функций, используемых в задачах классификации новых объектов. Исследованы основные причины возникновения данных ошибок и их влияние на построение классификаторов. На основе геометрической интерпретации задачи классификации предложены методы, позволяющие не только анализировать качество обучающей выборки, но и выявлять возможные причины ошибок, содержащихся в ней, а также выполнять их коррекцию, необходимую для последующего построения эффективного классификатора. Для численного учета общих долей удаляемых и корректируемых выбросов в обучающей выборке предложено использовать соответствующие предельно допустимые пороговые величины. По ним даны рекомендации для основных предметных областей. В алгоритме анализа прецедентов использована специальная мера близости одиночного объекта к произвольному классу, аналогичная методу ближайшего соседа, но с той разницей, что соседство определяется не по одной ближайшей точке, а по нескольким. Сложность предложенных алгоритмов анализа и коррекции обучающих выборок является полиномиальной по числу точек в обучающей выборке: в первом случае квадратичная, во втором линейная. Получаемая в результате коррекции новая обучающая выборка задает более плавные границы классов в пространстве значений признаков. Вследствие этого данные множества точек в большей степени удовлетворяют гипотезе компактности и в результате дают решающие функции с более простой структурой, требующие затем меньше вычислительных операций на решение задачи классификации.

8. Методы автоматического построения онтологий [2016-06-01]
Авторы: Платонов А.В., Полещук Е.А.
Просмотров: 1654
В статье рассматривается процесс автоматического построения онтологии предметной области по входному набору текстовых документов. В частности, рассматриваются процессы, аналогичные системам Biperpedia, BOEMIE Project и т.п. В работе освещены основные этапы автоматической генерации онтологии, а именно процесс извлечения объектов предметной области, концептов, то есть терминов, объединяющих множество объектов, а также процесс извлечения семантических отношений и правил для онтологии. Для каждого процесса представлены алгоритмы, решающие задачу соответствующего шага генерации онтологии. В рамках процесса извлечения объектов предметной области рассмотрены алгоритмы извлечения именованных сущностей, генерации регулярных выражений на основе генетических алгоритмов. Предложен процесс построения шаблонов извлечения объектов на базе методов поиска частотных цепочек символов по аналогии с поиском частотных шаблонов последовательностей. В статье описаны основные шаги извлечения концептов предметной области и рассмотрены алгоритмы для определения его основных атрибутов. Содержится описание методов извлечения семантических отношений на базе лексико-синтаксических шаблонов. Предложен подход к данной задаче с точки зрения поиска ассоциативных правил по аналогии с алгоритмами поиска частотных шаблонов. Наконец, в работе предложены три метода оценки качества работы всего процесса автоматического построения онтологии: метод на основе золотого стандарта, метод ручной оценки и косвенный метод через оценку качества использующего онтологию ПО. Рассмотрены положительные и отрицательные стороны того или иного метода оценки. Предложен компромиссный подход для оценки качества модели, учитывающий достоинства и недостатки каждого из описанных.

9. Метод распределенного анализа свойств верифицируемых моделей [2016-06-01]
Автор: Шипов А.А.
Просмотров: 1058
Программные системы с каждым днем становятся все более сложными и комплексными, поэтому необходимо наличие таких инструментов, которые позволяли бы относительно легко выполнять проверку их работы на соответствие заданным спецификациям, особенно, когда речь идет о больших и распределенных программных системах. Однако зачастую на пути верификации данного рода систем встает проблема комбинаторного взрыва, из-за которой возникает резкий рост временной сложности во время верификации при относительно невысоком увеличении объема верифицируемых систем. И, как показывает практика, использование только существующих на сегодняшний день методов борьбы с данной проблемой, таких как абстракция, интерпретация и верификация «на лету», зачастую может оказаться недостаточным для ее преодоления. Логика подсказывает, что и процесс выполнения больших распределенных программных систем, и процесс верификации должны осуществляться распределенным образом. В статье подробно рассмотрен и проанализирован предлагаемый автором метод для преодоления проблемы комбинаторного взрыва в дополнение к уже имеющимся методам. Идея его состоит в использовании алгоритма распределенной верификации автоматов Бюхи для логики линейного времени (LTL). Применение данного алгоритма позволяет повысить эффективность и быстродействие всего процесса верификации за счет разделения вычислительной нагрузки на заданное количество вычислительных узлов. Несмотря на то, что идея разделения вычислительной нагрузки не является инновационной и подобные средства уже присутствуют в таком инструменте формальной верификации методом проверки на моделях, как Spin, предложенный алгоритм демонстрирует на практике более высокую эффективность работы, чем в Spin, что подкрепляется рядом наглядных примеров.

10. Системный анализ и принятие решений о реинжиниринге корпоративных информационно-управляющих систем [2016-06-01]
Автор: Шильникова О.В.
Просмотров: 1075
Cтатья посвящена эволюции информационно-управляющих систем. В начале жизненного цикла этих систем моделирование процесса поддержки их работоспособности осуществляется с целью оптимизации использования состава ресурсов, необходимых на первом этапе. Модель учитывает, что параметры системы постепенно дрейфуют и уходят достаточно далеко от оптимальных значений, а фазовая траектория эволюции системы «притягивается» к стабильной, но неоптимальной точке. В итоге это свидетельствует о том, что, возможно, выполняются необходимые условия достижения точки бифуркации. Приведение системы к более эффективному состоянию, не прерывая ее жизненного цикла, требует некоторых специальных решений, одним из которых является выпуск следующей версии системы. Качественный и количественный анализ функциональных параметров, эксплуатационных свойств и живучести распределенной многоуровневой информационно-управляющей системы выполняется с помощью компьютерных средств моделирования, в том числе имитационного. Модели учитывают неоднородность и изменчивость структуры, пропускную способность каналов связи и свойства распределенной БД. В последнее время актуальными становятся исследования свойств эволюционирующих информационных систем в управлении корпорациями. При наличии в корпорациях научно-исследовательских IT-подразделений одними из их новых важнейших функций могут стать собственные системно-аналитические исследования и постановки задач системного анализа корпоративных информационно-управляющих систем для университетов.

| 1 | 2 | 3 | Следующая →