ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2017 г.)
2-летний импакт-фактор РИНЦ: 0,500
2-летний импакт-фактор РИНЦ без самоцитирования: 0,405
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,817
5-летний импакт-фактор РИНЦ: 0,319
5-летний импакт-фактор РИНЦ без самоцитирования: 0,264
Суммарное число цитирований журнала в РИНЦ: 6012
Пятилетний индекс Херфиндаля по цитирующим журналам: 404
Индекс Херфиндаля по организациям авторов: 338
Десятилетний индекс Хирша: 17
Место в общем рейтинге SCIENCE INDEX за 2017 год: 527
Место в рейтинге SCIENCE INDEX за 2017 год по тематике "Автоматика. Вычислительная техника": 16

Больше данных по публикационной активности нашего журнале за 2008-2017 гг. на сайте РИНЦ

Добавить в закладки

Следующий номер на сайте

2
Ожидается:
16 Июня 2019

В Межведомственном суперкомпьютерном центре РАН рассматривается возможность использования современных суперкомпьютеров при решении ресурсоемких задач мультиагентного моделирования роста перколяционных кластеров

15.02.2012

При компьютерном моделировании поведения систем, которые принято называть сложными, нередко приходится сталкиваться с проявлением феномена скачкообразного, лавинообразного изменения характеристик поведения под воздействием сравнительно плавных изменений одного или нескольких ключевых параметров. Для разрешения подобных проблем целесообразно использовать алгоритмы формирования и роста перколяционных кластеров.

На феномен перколяции впервые обратили внимание Флори и Стокмайер при изучении эффектов формирования гелей и полимеризации. Однако термины «перколяция» и «теория перколяции» в своем современном толковании чаще всего связывают с публикацией работы Броадбента и Хаммерсли. Сегодня теорию перколяции пытаются применять при исследованиях нетривиального поведения самых разнообразных неупорядоченных систем (структур и свойств пористых материалов, прыжковой проводимости в полупроводниках, процессов самоорганизации в образовании фрактальных структур и т.д.).

Заслуживают внимания возможности использования подобного феномена при моделировании процессов распространения массовых эпидемий, когда незначительные изменения вероятности инфицирования отдельных представителей (или группы представителей) могут привести к скачкообразному изменению поведения всей популяции (болезнь из локальной и неопасной переходит в стадию широкомасштабной пандемии).

Для реализации алгоритмов перколяции в качестве наиболее распространенной среды интерпретации принято использовать так называемые решеточные модели. На решетках феномен перколяции отображается цепочками связанных объектов (кластерами), которые в дальнейшем можно распределять по размерам. Если цепочка соединяет две противоположные стороны решетки, то такой кластер и будет перколяционным, сигнализирующим об изменении характера поведения.

Подробное описание дается в статье «Высокопроизводительные вычисления в практике моделирования роста перколяционных кластеров», автор Лапшина С.Ю. (Межведомственный суперкомпьютерный центр РАН, г. Москва).