ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2017 г.)
2-летний импакт-фактор РИНЦ: 0,500
2-летний импакт-фактор РИНЦ без самоцитирования: 0,405
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,817
5-летний импакт-фактор РИНЦ: 0,319
5-летний импакт-фактор РИНЦ без самоцитирования: 0,264
Суммарное число цитирований журнала в РИНЦ: 6012
Пятилетний индекс Херфиндаля по цитирующим журналам: 404
Индекс Херфиндаля по организациям авторов: 338
Десятилетний индекс Хирша: 17
Место в общем рейтинге SCIENCE INDEX за 2017 год: 527
Место в рейтинге SCIENCE INDEX за 2017 год по тематике "Автоматика. Вычислительная техника": 16

Больше данных по публикационной активности нашего журнале за 2008-2017 гг. на сайте РИНЦ

Добавить в закладки

Следующий номер на сайте

2
Ожидается:
16 Июня 2019

В Тверском государственном техническом университете предложен новый подход к решению задачи классификации графических зависимостей, объединяющий ее с задачей сегментации.

26.11.2014

В системах автоматической диагностики широко используются средства классификации объектов, представленных дискретным набором признаков. Успешность решения задачи во многом зависит от соблюдения компромисса между числом признаков и точностью описания свойств объектов. Очевидно, что при повышении точности отображения свойств необходимо увеличивать количество признаков. Однако чрезмерная детализация и внимание к субъективным особенностям объектов могут привести к усложнению алгоритмов классификации и увеличению ошибок. Это особенно часто проявляется при создании нейросетевых классификаторов. Анализ выборок описаний объектов можно построить на основе последовательного расширения признаков, что связано с уточнением деталей в описании объекта. Но при таком подходе возникает вопрос о том, какие признаки необходимо добавлять. Более простым, на взгляд авторов, является построение классификаций на основе идей последовательного формирования вторичных понятий, которые позволяют укрупнять признаки, создавая, в конце концов, лаконичные описания классов объектов наиболее общими признаками.

Для решения ряда прикладных задач могут оказаться полезными классификаторы, работающие с выборками двухмерных графических зависимостей.

Подробное описание дается в статье «Алгоритм классификации графиков с последовательным укрупнением признаков», авторы: Филатова Н.Н., Ханеев Д.М., Сидоров К.В. (Тверской государственный технический университет, Тверь).