ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2017 г.)
2-летний импакт-фактор РИНЦ: 0,500
2-летний импакт-фактор РИНЦ без самоцитирования: 0,405
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,817
5-летний импакт-фактор РИНЦ: 0,319
5-летний импакт-фактор РИНЦ без самоцитирования: 0,264
Суммарное число цитирований журнала в РИНЦ: 6012
Пятилетний индекс Херфиндаля по цитирующим журналам: 404
Индекс Херфиндаля по организациям авторов: 338
Десятилетний индекс Хирша: 17
Место в общем рейтинге SCIENCE INDEX за 2017 год: 527
Место в рейтинге SCIENCE INDEX за 2017 год по тематике "Автоматика. Вычислительная техника": 16

Больше данных по публикационной активности нашего журнале за 2008-2017 гг. на сайте РИНЦ

Добавить в закладки

Следующий номер на сайте

2
Ожидается:
16 Июня 2019

В Институте динамики систем и теории управления СО РАН совместно с Национальным исследовательским Иркутским государственным техническим университетом разработан web-сервис для автоматизированного формирования баз знаний продукционного типа на основе результатов концептуального моделирования.

25.03.2015

В настоящее время любое знание является стратегическим ресурсом и актуальность разработки методов и средств управления знаниями, в том числе и базами знаний, остается высокой. В большинстве случаев под термином «управление знаниями» понимается, в первую очередь, систематическое, явное и преднамеренное приобретение (сбор) и использование в основном корпоративных знаний с целью максимизации эффективности их применения с точки зрения получения прибыли и повышения качества продукции и услуг. При этом под системами управления знаниями (СУЗ) будем понимать специализированные веб-порталы, экспертные системы, системы документооборота, системы поиска, классификации, индексации и каталогизации данных. Таким образом, система управления базами знаний (СУБЗ) – это комплекс интеллектуальных средств для создания и использования баз знаний.

Наиболее важными задачами, решаемыми в процессе управления знаниями, являются извлечение, структурирование и формализация знаний. Сложность и трудоемкость их решения в основном и обусловливают сложность процесса создания систем, основанных на знаниях. Эффективность данного процесса может быть повышена за счет автоматизации его отдельных этапов:

– концептуализации и формализации – при помощи систем онтологического и когнитивного моделирования (например, Protégé, FreeMind, Xebece, TheBrain, XMind и др.);

– реализации – при помощи специализированных редакторов баз знаний (например, Visual Expert System Designer, Expert System Designer, ES-Builder, ДИЭКС и др.).

Однако в настоящий момент практически отсутствуют программные средства, охватывающие все этапы создания баз знаний и экспертных систем и обеспечивающие комплексность процесса разработки: от модели предметной области до создания кода на языке представления знаний.

Подробное описание дается в статье «Web-сервис для автоматизированного формирования продукционных баз знаний на основе концептуальных моделей», авторы: Юрин А.Ю. (Институт динамики систем и теории управления СО РАН, Иркутск; Национальный исследовательский Иркутский государственный технический университет, Иркутск), Дородных Н.О. (Институт динамики систем и теории управления СО РАН, Иркутск).