ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2017 г.)
2-летний импакт-фактор РИНЦ: 0,500
2-летний импакт-фактор РИНЦ без самоцитирования: 0,405
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,817
5-летний импакт-фактор РИНЦ: 0,319
5-летний импакт-фактор РИНЦ без самоцитирования: 0,264
Суммарное число цитирований журнала в РИНЦ: 6012
Пятилетний индекс Херфиндаля по цитирующим журналам: 404
Индекс Херфиндаля по организациям авторов: 338
Десятилетний индекс Хирша: 17
Место в общем рейтинге SCIENCE INDEX за 2017 год: 527
Место в рейтинге SCIENCE INDEX за 2017 год по тематике "Автоматика. Вычислительная техника": 16

Больше данных по публикационной активности нашего журнале за 2008-2017 гг. на сайте РИНЦ

Добавить в закладки

Следующий номер на сайте

2
Ожидается:
16 Июня 2019

В Донском государственном техническом университете совместно с Краснодарским высшим военным училищем им. генерала армии С.М. Штеменко представлен комбинированный биоинспирированный алгоритм, реализующий решение задачи глобальной оптимизации в случае проблем, связанных с обучением искусственных нейронных сетей.

09.01.2019

Нейронные сети сегодня позволяют успешно решать различные задачи, связанные с обработкой и анализом данных в области робототехники, медицины, экономики, связи, автоматизации производства и пр. К таким задачам можно отнести распознавание образов, формирование моделей принятия решений, системы управления различными устройствами, системы массового обслуживания и многие другие.

При решении такого рода задач получены различные результаты, в которых рассматривается большое количество конфигураций нейронных сетей с различными принципами их обучения. Алгоритмы обучения искусственных нейронных сетей подразделяют на два класса: детерминистские и стохастические. В основе детерминистских методов при обучении сети лежит строгая последовательность действий, направленная на коррекцию весов сети на основе значений входных величин, выходов, полученных в результате расчетов, и желаемых выходов. В стохастических методах при обучении сети изменение весов основано на псевдослучайных значениях. При этом сохраняются значения, которые ведут к улучшению результата.

Одним из классических методов обучения многослойной сети является алгоритм обратного распространения ошибок. Основная идея этого алгоритма базируется на градиентных методах оптимизации и применима только к дифференцируемым функциям активации нейронов сети. Минимизация среднеквадратичной ошибки сети осуществляется градиентным методом наискорейшего спуска. Обучение нейронной сети классическими алгоритмами зачастую приводит к попаданию в локальные минимумы. Различные комбинированные алгоритмы, обеспечивающие широту (диверсификацию) изменения величин весов, исследовались неоднократно. Применение биоинспирированных алгоритмов при решении задач поисковой оптимизации с нелинейной целевой функцией обеспечивает диверсификацию поиска решений. Одним из таких методов является алгоритм светлячков (firefly algorithm, FA). Ранее авторами был рассмотрен алгоритм, в котором весовые коэффициенты нейронной сети уточняются на основе алгоритма светлячков. Выявлено, что использование этого алгоритма позволяет получить более эффективное решение по сравнению с классическим методом настройки весовых коэффициентов.

Подробное описание дается в статье «Исследование комбинированного алгоритма при обучении трехслойных нейронных сетей различной топологии», авторы: Остроух Е.Н., Евич Л.Н., Чернышев Ю.О., Маркин С.Д. (Донской государственный технический университет, Ростов-на-Дону), Панасенко П.А. (Краснодарское высшее военное училище им. генерала армии С.М. Штеменко, Краснодар).