ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2017 г.)
2-летний импакт-фактор РИНЦ: 0,500
2-летний импакт-фактор РИНЦ без самоцитирования: 0,405
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,817
5-летний импакт-фактор РИНЦ: 0,319
5-летний импакт-фактор РИНЦ без самоцитирования: 0,264
Суммарное число цитирований журнала в РИНЦ: 6012
Пятилетний индекс Херфиндаля по цитирующим журналам: 404
Индекс Херфиндаля по организациям авторов: 338
Десятилетний индекс Хирша: 17
Место в общем рейтинге SCIENCE INDEX за 2017 год: 527
Место в рейтинге SCIENCE INDEX за 2017 год по тематике "Автоматика. Вычислительная техника": 16

Больше данных по публикационной активности нашего журнале за 2008-2017 гг. на сайте РИНЦ

Добавить в закладки

Следующий номер на сайте

2
Ожидается:
16 Июня 2019

В Военном учебно-научном центре Военно-воздушных сил «Военно-воздушная академия им. проф. Н.Е. Жуковского и Ю.А. Гагарина» исследуется одно из направлений цифровой обработки изображений – задача выделения их контуров.

06.03.2019

Сегодня практически во всех отраслях науки и техники нет ни одной области, которая не нуждалась бы в визуальном представлении информации. Визуальная информация (фото, видеофайлы, голограммы и многое другое) хранится и воспроизводится в цифровом виде. Поэтому в различных сферах медицины, астрономии, микроскопии, лазерной техники, промышленности, правоохранительной деятельности широко применяют разнообразные компоненты для цифровой обработки изображений. Существует множество программных продуктов и БД, таких как MATLAB, MATHCAD, OpenCV и т.д., которые в своем составе имеют самостоятельные модули, позволяющие обрабатывать цифровые изображения.

Цифровая обработка изображений нацелена на повышение визуального качества (использование различных фильтров) и выделение необходимых для пользователя информативных элементов обрабатываемого изображения (например, выделение контуров, ключевых точек и т.д.).

Важным информативным элементом изображения является его контурный состав, который может использоваться для последующего распознавания объектов, выделения областей интереса и т.д. Существующие процедуры выделения контуров изображений построены на обнаружении резких локальных перепадов яркости. Для обнаружения таких перепадов особенно хорошо подходят производные 1-го и 2-го порядков. Выделение контура с использованием производной 1-го порядка обычно предполагает нахождение градиента по операторам Превитта или Собела и дальнейшую пороговую обработку. Детекторы контуров Марра–Хилдрета и Кэнни (нахождение 2-й производной) построены на использовании выражения лапласиана гауссиана.

На практике съемка нередко происходит в различных неблагоприятных условиях: туман и повышенная влажность, предельно низкая освещенность, критические температуры, механические вибрации цифрового фотоприемника.

Подробное описание дается в статье «Программная модель для исследования эффективности процедур выделения контуров зашумленных изображений», авторы: Самойлин Е.А., Карпов С.А. (Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия им. проф. Н.Е. Жуковского и Ю.А. Гагарина», Воронеж).